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Abstract

Deep learning models are at the forefront of human technology. However, we lack a sys-
tematic framework for understanding these systems as mathematically explicit composed
structures. This hinders our ability to communicate, implement, and analyze models.
This work resolves this shortfall. In this thesis, I present neural circuit diagrams, a
comprehensive graphical language for deep learning architectures with a robust math-
ematical basis in category theory. This work is split into three chapters that identify
gaps in the research and contribute solutions.

Chapter 1: The Problem and the Solution I assess the current state of deep
learning research. I identify the importance of architectural innovations to the success
of contemporary models. I contribute a critique that I believe is vital to address: we lack
a robust graphical language for understanding architectures. I provide a case study of
Attention is All You Need, showing how its presentation is unclear. More generally, we
lack a compositional mathematical framework that encompasses contemporary models.
Then, I argue why category theory is a promising approach to resolve these issues.

Chapter 2: Applications of Neural Circuit Diagrams I introduce neural circuit
diagrams with a focus on practical applications. This chapter avoids category theory,
proving that diagrams can achieve general adoption. I provide comprehensive diagrams
for a host of architectures – from transformers to computer vision – contributing ex-
planations for systems that are otherwise difficult to communicate. Finally, I prove the
analytical utility of neural circuit diagrams by using them to analyze linear rearrange-
ments and computational complexities of algorithms.

Chapter 3: Theory of Functor String Diagrams I focus on the robust theory
underlying neural circuit diagrams. Using category theory, I build on the nascent field
of functor string diagrams, contributing first-principles and novel tools such as family
expressions. I reconcile neural circuit diagrams with functor string diagrams, showing
how neural circuit diagrams have a robust mathematical basis. By providing an ex-
plicit model of deep learning architectures, this section contributes the foundation for
future work that systematically analyzes the mathematical properties of deep learning
architectures.
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Chapter 1

The Problem and the Solution

1.1 The Importance of Communicating Architectures

Deep learning models are immense statistical engines. They rely on components con-
nected in intricate ways to slowly nudge input data toward some target. Deep learn-
ing models convert big data into usable predictions, forming the core of many AI sys-
tems. The design of a model - its architecture - can significantly impact performance
(Krizhevsky et al., 2017), ease of training (He et al., 2015; Srivastava et al., 2015), gen-
eralization (Ioffe and Szegedy, 2015; Ba et al., 2016), and ability to efficiently tackle
certain classes of data (Vaswani et al., 2017; Ho et al., 2020).

Architectures can have subtle impacts, such as different image models recognizing pat-
terns at various scales (Ronneberger et al., 2015; Luo et al., 2017). Many significant
innovations in deep learning have resulted from architecture design, often from fright-
eningly simple modifications (He et al., 2015). Furthermore, architecture design is in
constant flux. New developments frequently improve on state-of-the-art methods (He
et al., 2016; Lee, 2023), often showing that the most common designs are just one of
many approaches worth investigating (Liu et al., 2021; Sun et al., 2023).

However, these critical innovations are presented using ad-hoc diagrams and linear al-
gebra notation (Vaswani et al., 2017; Goodfellow et al., 2016). These methods are ill-
equipped for the non-linear operations and actions on multi-axis tensors that constitute
deep learning models (Xu et al., 2023; Chiang et al., 2023). Furthermore, these tools are
insufficient for papers to present their models in full detail. Subtle details such as the
order of normalization or activation components can be missing, despite their impact on
performance (He et al., 2016).

Works with immense theoretical contributions can fail to communicate equally insightful
architectural developments (Rombach et al., 2022; Nichol and Dhariwal, 2021). Many
papers cannot be reproduced without reference to the accompanying code. This was
quantified by Raff (2019), where only 63.5% of 255 machine learning papers from 1984
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1 The Problem and the Solution

to 2017 could be independently reproduced without reference to the author’s code. In-
terestingly, the number of equations present was negatively correlated with reproduction,
further highlighting the deficits of how models are currently communicated. The year
that papers were published had no correlation to reproducibility, indicating that this
problem is not resolving on its own.

Relying on explaining models through code raises many issues. The reader must under-
stand a specific programming framework, and there is a burden to dissect and reimple-
ment the code if frameworks mismatch. Without reference to a blueprint, mistakes in
code cannot be cross-checked. The overall structure of algorithms is obfuscated, raising
ethical risks about how data is managed (Kapoor and Narayanan, 2022).

Furthermore, papers that clearly explain their models without resorting to code provide
stronger scientific insight. As argued by Drummond (2009), replicating the code associ-
ated with experiments leads to weaker scientific results than reproducing a procedure.
After all, replicating an experiment perfectly controls all variables, including irrelevant
ones, making it difficult to link any independent variable to the observed outcome.

However, in machine learning, papers often cannot be independently reproduced without
replicating their accompanying code. As a result, the machine learning community misses
out on experiments that provide general insight independent of specific implementations.
Improved communication of architectures, therefore, will offer clear scientific value by
allowing the idea of models to be detached from any specific implementation.

1.2 Case Study: Shortfalls of Attention is All You Need

To highlight the problem of insufficient communication of deep learning architectures,
I present a case study of Attention is All You Need, the paper that introduced trans-
former models (Vaswani et al., 2017). Introduced in 2017, transformer models have
revolutionized machine learning, finding applications in natural language processing,
image processing, and generative tasks (Phuong and Hutter, 2022; Lin et al., 2021).

Transformers’ effectiveness stems partly from their ability to inject external data of
arbitrary width into base data. We refer to axes representing the number of items in
data as a width, and axes indicating information per item as a depth.

An attention head gives a weighted sum of the injected data’s value vectors, V . The
weights depend on the attention score the base data’s query vectors, Q, assign to each
key vector, K, of the injected data. Value and key vectors come in pairs. Fully connected
layers, consisting of learned matrix multiplication, generate Q, K, and V vectors from
the original base and injected data. Multi-head attention uses multiple attention
heads in parallel, enabling efficient parallel operations and the simultaneous learning of
distinct attributes.
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1.2 Case Study: Shortfalls of Attention is All You Need

Attention is All You Need, which I refer to as the original transformer paper, explains
these algorithms using diagrams (see Figure 1.1) and equations (see Equation 1.1,1.2,1.3)
that hinder understandability (Chiang et al., 2023; Phuong and Hutter, 2022).

Figure 1.1: My annotations of the diagrams of the original transformer model. Critical
information is missing regarding the origin of Q, K, and V values (red and blue), and
the axes over which operations act (green).

Attention(Q,K, V ) = SoftMax

(
QKT

√
dk

)
V (dk is the key depth) (1.1)

MultiHead(Q,K, V ) = Concat(head1, ...,headh)W
O (1.2)

where headi = Attention
(
QWQ

i ,KWK
i , V W V

i

)
(1.3)

The original transformer paper obscures dimension sizes and their interactions. The di-
mensions over which SoftMax1 and matrix multiplication operates is ambiguous (Figure
1.1.1, green; Equation 1.1, 1.2, 1.3).

1Using i and k to index over data, we have SoftMax(v)[i] = exp(v[i])/Σk exp(v[k]).
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1 The Problem and the Solution

Determining the initial and final matrix dimensions is left to the reader. This obscures
key facts required to understand transformers. For instance, K and V can have a
different width to Q, allowing them to inject external information of arbitrary width.
This fact is not made clear in the original diagrams or equations. Yet, it is necessary to
understand why transformers are so effective at tasks with variable input widths, such
as language processing.

The original transformer paper also has uncertainty regarding Q, K, and V . In Figure
1.1.1 and Equation 1.1, they represent separate values fed to each attention head. In
Figure 1.1.2 and Equation 1.2 and 1.3, they are all copies of each other at location (A)
of the overall model in Figure 1.1.3, while Q is separate in situation (B).

Annotating makeshift diagrams does not resolve the issue of low interpretability. As
they are constructed for a specific purpose by their author, they carry the author’s curse
of knowledge (Pinker, 2014; Hayes and Bajzek, 2008; Ross et al., 1977). In Figure 1.1,
low interpretability arises from missing critical information, not from insufficiently anno-
tating the information present. The information about which axes are matrix multiplied
or are operated on with the SoftMax is simply not present.

Therefore, we need to develop a framework for diagramming architectures that ensures
key information, such as the axes over which operations occur, is automatically shown.
Taking full advantage of annotating the critical information already present in neural
circuit diagrams, I present alternative diagrams in Figures 2.18, 2.19, and 2.20.

1.3 Current Approaches and Related Works

These issues with the current ad-hoc approaches to communicating architectures have
been identified in prior works, which have proposed their own solutions (Phuong and
Hutter, 2022; Chiang et al., 2023; Xu et al., 2023; Xu and Maruyama, 2022). This shows
that this is a known issue of interest to the deep learning community. Non-graphical
approaches focus on enumerating all the variables and operations explicitly, whether by
extending linear algebra notation (Chiang et al., 2023) or explicitly describing every step
with pseudocode (Phuong and Hutter, 2022).

Visualization, however, is essential to human comprehension (Pinker, 2014; Borkin et al.,
2016; Sadoski, 1993). Standard non-graphical methods are essential to pursue, and
the community will benefit significantly from their adoption; however, a standardized
graphical language is still needed.

The inclination towards visualizing complex systems has led to many tools being devel-
oped for industrial applications. Labview, MATLAB’s Simulink, and Modelica are used
in academia and industry to model various systems. For deep learning, TensorBoard
and Torchview have become convenient ways to graph architectures.

These tools, however, do not offer sufficient detail to implement architectures. They are
often dedicated to one programming language or framework, meaning they cannot serve
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1.3 Current Approaches and Related Works

as a general means of communicating new developments. Besides, a rigorously developed
framework-independent graphical language for deep learning architectures would help to
improve these tools. This requires diagrams equipped with a mathematical framework
that captures the changing structure of data, along with key operations such as broad-
casting and linear transformations.

Many mathematically rigorous graphical methods exist for a variety of fields. This
includes Petri nets, which have been used to model several processes in research and in-
dustry (Murata, 1989). Tensor networks were developed for quantum physics and have
been successfully extended to deep learning (Biamonte and Bergholm, 2017; Xu et al.,
2023; Xu and Maruyama, 2022). Xu et al. (2023) showed that re-implementing models
after making them graphically explicit can improve performance by letting parallelized
tensor algorithms be employed. Robust diagrams, therefore, can benefit both the com-
munication and performance of architectures. Formal graphical methods have also been
developed in physics, logic, and topology (Baez and Stay, 2010; Awodey, 2010).

All these graphical methods have been found to represent an underlying category, a
mathematical space with well-defined composition rules (Meseguer and Montanari, 1990;
Baez and Stay, 2010). A category theory approach allows a common structure, monoidal
products, to define an intuitive graphical language (Selinger, 2009; Fong and Spivak,
2019). Category theory, therefore, provides a robust framework to understand and
develop new graphical methods.

However, a noted issue (Chiang et al., 2023) of previous graphical approaches is they
have difficulty expressing non-linear operations. This arises from a tensor approach to
monoidal products. Data brought together cannot necessarily be copied or deleted.
This represents, for instance, axes brought together to form a matrix and this approach
makes linear operations elegantly manageable. It, however, makes expressing copying
and deletion impossible. The alternative Cartesian approach allows copying and deletion,
reflecting the mechanics of classical computing.

The Cartesian approach has been used to develop a mathematical understanding of deep
learning (Shiebler et al., 2021; Fong et al., 2019; Wilson and Zanasi, 2022; Cruttwell
et al., 2021). However, Cartesian monoidal products do not automatically keep track
of dimensionality and cannot easily represent broadcasting or linear operations. These
works often rely on the most rudimentary model of deep-learning networks as sequential
linear layers and activation functions, despite residual networks having become the norm
(He et al., 2015, 2016). The graphical language generated by a pure Cartesian approach
fails to show the details of architectures, limiting its ability to consider models as they
appear in practice.

The literature reveals a combination of problems that need to be solved. Deep learning
suffers from poor communication and needs a graphical language to understand and
analyze architectures. Category theory can provide a rigorous graphical language but
typically forces a choice between tensor or Cartesian approaches. The elegance of tensor
products and the flexibility of Cartesian products must both be available to properly
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1 The Problem and the Solution

represent architectures. A category arises when a system has sufficient compositional
structure, meaning a non-category theory approach to diagramming architectures will
likely yield a category anyway. The challenge of reconciling Cartesian and tensor ap-
proaches, therefore, remains.

1.4 The Promise of Category Theory

There is, however, a nascent field of category theory that can graphically reconcile the
details of axes and products. In “Category Theory Using String Diagrams”, Marsden
(2014) used functors, structure-preserving maps, instead of objects as wires in diagrams.
This generates diagrams that clearly show compositional structures at different levels
of analysis. His work has garnered interest from other authors (Piedeleu and Zanasi,
2023; Braithwaite and Román, 2023; Román, 2021). However, only Nakahira (2023) has
worked to extend Marsden’s string diagram approach to new circumstances in “Dia-
grammatic Category Theory”, a work from July this year.

I will call diagrams which use functor wires functor string diagrams, in contrast to
traditional monoidal string diagrams (Selinger, 2009), which are specialized to show a
category with a privileged product. I see them as an immensely promising framework
to provide robust diagrams that show structure at different levels of analysis and can
show both the details of axes and products. However, they have not been extensively
developed for practical applications. Developing a general graphical language for deep
learning architectures using functor string diagrams will require extensive work.

The nature of a problem determines which field of mathematics is appropriate to under-
stand it. Deep learning models are highly composed systems, with commands forming
components, which form layers, which form models at immense scales. Previously (see
Section 1.2), we saw how standard mathematical approaches, such as linear algebra no-
tation fall short of understanding these systems. Category theory is the mathematical
study of composition and how composition is preserved between perspectives. Therefore,
it is the appropriate mathematics to understand deep learning models.

In addition to offering comprehensive diagrams, a robust category theory-based graphical
language for deep learning architectures would have additional benefits. The category
of diagrams would correspond to a category of mathematical expressions. Deep learning
models are mathematical expressions and should be understood as such. However, they
are also implemented code and human-comprehensible engineered systems. Moving be-
tween these perspectives, a category theory approach allows the underlying structure to
be preserved.

Category theory can place diagrams on a rigorous foundation that relates them to exist-
ing research combining graphical methods (Selinger, 2009), machine learning (Shiebler
et al., 2021; Fong et al., 2019; Cruttwell et al., 2021), probability theory (Perrone, 2022;
Fritz et al., 2023), and various other fields. Meanwhile, machine learning models often
have vague theory (He et al., 2016). Robust diagrams are the key to connecting a field

6



1.5 Contributions

with too few abstract foundations, deep learning, to a field with too many, category
theory, satisfying a gap in the literature.

Previous works that have used category theory to understand deep learning only use
rudimentary models. In Fong et al. (2019), only the most basic sequential linear layer-
activation layer neural networks are covered by the category NNet being studied. In
a survey of string diagram methods, Piedeleu and Zanasi (2023) identified that the
models presented by Fong et al. (2019) are among the more diagrammatically rich. In
their survey, Piedeleu and Zanasi (2023) notes that the current rudimentary models of
deep learning systems are only a “starting point” for future work.

The issue of only looking at rudimentary, linear layer-activation layer models is pervasive
in deep learning research (Zhang et al., 2017; Saxe et al., 2019; Li et al., 2022). There are
uncountably many ways of relating inputs to outputs. Every theory or hypothesis about
deep learning algorithms has to assume that we are working with some subset of all
possible functions. However, specifying this subset means theoretical insights can only
apply to that subset. This precludes us from using such theories to compare disparate
architectures and make design choices.

The problem of only considering rudimentary models – I feel – is a consequence of us
not having the tools to robustly represent more complex models, never mind the tools
to confidently analyze them. Category theory-based diagrams can serve as models of
intricate systems. Structure-preserving maps allow analyses to scale over entire models.
Therefore, developing comprehensive diagrams that correspond to mathematical expres-
sions can be the first step in a rigorous theory of deep learning architectures with clear
practical applications.

1.5 Contributions

Aware of the need for comprehensive diagrams for deep learning models, and the immense
benefits that would accompany a category theory-based approach, I present neural circuit
diagrams - a robust, category theory-based graphical language developed to represent
deep learning models. The main content of this thesis is split into two chapters –
a practical chapter, introducing neural circuit diagrams in an accessible manner, and
which contributes comprehensive diagrams for various architectures; and a theoretical
chapter, contributing tools for the study of functor string diagrams and using them to
underpin broadcasting and neural circuit diagrams.

Chapter 2: Applications of Neural Circuit Diagrams

In chapter 2, I present neural circuit diagrams for practical applications. To prove that
neural circuit diagrams can achieve general adoption by artificial intelligence researchers
without specialized knowledge, I provide a guide for reading neural circuit diagrams
without category theory.

7



1 The Problem and the Solution

Then, I diagram various architectures that are otherwise difficult to explain. This in-
cludes the transformer model (see Section 2.3.2), convolutional neural networks (see
Section 2.3.3), the residual network with identity mappings, the UNet architecture (see
Section 2.3.4), and then the vision transformer (see Section 2.3.5). Even for many ma-
chine learning specialists reading this work, I believe these diagrams will be the first
time that many of these architectures have been understandably explained to them.

The transformer was chosen as the original presentation is cumbersome, presenting a
barrier to entry for researchers wishing to learn about state-of-the-art models. Convo-
lution is difficult to explain, especially when transposed2 or when dilation is used. The
residual network with identity mappings is an improvement on the original residual net-
works (He et al., 2016), however, even the PyTorch implementation of residual networks
failed to realize the subtle innovations that had occurred. Contrasting to existing pre-
sentations – therefore – neural circuit diagrams are a powerful and comprehensive tool
that overcomes present limitations in deep learning research.

My investigation of the vision transformer is particularly interesting. There, I show
how neural circuit diagrams naturally link to extending architectures to new modalities,
motivating innovation. Furthermore, directly reading computational complexity from di-
agrams is a powerful tool for designing and improving algorithms. These analytical tools
open up an exciting avenue of future research, where the development and refinement of
models are accelerated by using a robust graphical framework.

This chapter addresses the open problem of improving the communication of architec-
tures in a novel way that improves on previous works. A graphical approach is a signifi-
cant advantage over symbolic approaches such as “Named Tensor Notation” by Chiang
et al. (2023) or “Formal Algorithms for Transformers” by Phuong and Hutter (2022).
Unlike “Graph Tensor Networks” by Xu et al. (2023), understanding neural circuit dia-
grams does not require specialized mathematical knowledge. By covering a broad range
of architectures, my presentation has a wider scope than these works. Additionally, by
providing an analysis of backpropagation and computational complexity, this chapter
presents a technical contribution that goes beyond these previous approaches.

Chapter 3: Theory of Functor String Diagrams

As typical monoidal graphical approaches have difficulty showing both independent data
and the details of axes, I use this chapter to extend the functor string diagrams developed
by Marsden (2014) and Nakahira (2023). Each section of this chapter contributes to

2The PyTorch ConvTranspose2D describes it as;

This module can be seen as the gradient of Conv2d with respect to its input. It is also
known as a fractionally-strided convolution or a deconvolution (although it is not an
actual deconvolution operation as it does not compute a true inverse of convolution).
For more information, see the visualizations here and the Deconvolutional Networks
paper.
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1.5 Contributions

making functor string diagrams more generally applicable and accessible. From Theory
to Application: A Robust Basis for Neural Circuit Diagrams, the final section, reconciles
neural circuit diagrams with functor string diagrams. This relates neural circuit diagrams
with a mathematically robust graphical framework. This allows us to generate category
theory-based insights into algorithms.

3.1 Building Blocks

I introduce functor string diagrams from a first-principles perspective. I ensure that all
diagrams can be decomposed into vertical sections, and that new features are equivalent
expressions of prior constructs. These form the two key principles of diagrams. This
ensures all diagrams can be decomposed and understood. In contrast, Marsden (2014)
and Nakahira (2023) emphasize colored regions that I feel distract from the focus of
diagrams, which should be clearly presenting composition.

3.2 Reasoning with Diagrams

To reason about diagrams, I contribute diagrammatic family expressions. These are
powerful tools to conduct proofs using diagrams. Graphical proofs are addressed by
Nakahira (2023). However, my family expressions allow new features to be graphically
defined and are more explicit than the dotted boxes Nakahira (2023) employs.

Having developed these tools, I provide a graphically intuitive proof of the Yoneda
lemma, a central result from category theory. This shows the utility of my approach
and contributes to understanding this notoriously strange result, encouraging more
widespread use of category theory-derived ideas.

3.3 The Product Extension

I extend functor string diagrams to consider products. This section sets up the infras-
tructure for both the details of axes and separate data to be considered. This topic
is briefly covered by Marsden (2014) using subdiagrams, and by Nakahira (2023) using
specialized notation. However, to represent the free construction of morphisms within an
axis using products, I had to develop novel notation that employs a “pseudomorphism”.
Furthermore, relying on the principle of vertical section decomposition and equivalent
expression instead of colored regions leads to a more natural expression of monoidal
products and bifunctors than those previous works.

3.4 Broadcasting

I conduct an in-depth category theory-based analysis of broadcasting. Broadcasting is
critical to understanding how deep learning networks scales, and confidently diagram-
ming it is an explicit goal of my approach. The deep learning community needs a clear,
general definition of broadcasting. Works like Chiang et al. (2023) had to develop be-
spoke infrastructure to consider it, and the PyTorch broadcasting semantics are difficult
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1 The Problem and the Solution

to parse. PyTorch derives its broadcasting methodology from NumPy, indicating this is
a widespread shortfall.

I present a general definition of broadcasting in. Then, I analyze what tools we need
to consider broadcasting in neural circuit diagrams. This leads to the insight that a
few key specifications – a monoidal index category – is sufficient for broadcasting to
be well-defined. Furthermore, such index categories create a correspondence between
coprojections – elements which identify functions – and indexes for broadcasted axes.
Additionally, I prove that broadcasting is independent of the choice of indexes used to
define it. These proofs let broadcasting be confidently used in diagrams.

3.5 From Theory to Application: A Robust Basis for Neural Circuit Diagrams

I show how neural circuit diagrams emerge from a specification of Cartesian monoidal
index categories. This provides a solid mathematical foundation for neural circuit dia-
grams. Then, I show particular category theory insights regarding natural transforma-
tions that let us better understand algorithms. I show how they guide us from a diagram
that describes multi-head attention to a diagram that implements it.

Chapter 4: Future Work

Neural circuit diagrams offer a comprehensive means of accelerating the development and
analysis of models used in practice, while functor string diagrams are a robust graphical
framework for compositional systems. This opens up many avenues for future research.
In addition to the benefits of diagramming more architectures not covered in this work,
tools could be developed to convert between diagrams and code automatically.

Additionally, the theory underpinning diagrams could be extended to consider compo-
sitional learning (Fong et al., 2019; Cruttwell et al., 2021) and probabilistic mechanics
(Fritz and Rischel, 2020; Fritz et al., 2023; Perrone, 2022). This would allow the math-
ematical nature of all architectures that can be represented by neural circuit diagrams
to be rigorously analyzed. This would provide a mathematical foundation for almost all
contemporary deep learning models, contrasting with existing theoretical work that of-
ten focuses on toy models (Zhang et al., 2017; Saxe et al., 2019; Li et al., 2022; Cruttwell
et al., 2021).

Theory developed from neural circuit diagrams would apply to all models that can be
represented with them, encompassing an immense scope. In this way, neural circuit
diagrams are vital for bridging the gap between the application and theory of deep
learning architectures.
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Chapter 2

Applications of Neural Circuit Diagrams

Neural circuit diagrams intend to be used by various parties, from students first learning
the subject to deep learning researchers investigating their mathematical foundations.
This makes their presentation delicate; different audiences will want to know different
things. This chapter aims to give a general introduction emphasizing using neural circuit
diagrams to understand applied models better.

Separating this chapter from my more dense mathematical investigations serves a few
purposes. It shows that neural circuit diagrams can be accessible and serve as a genuine
diagrammatic standard for the deep learning community. It shows they have clear value
to the applied engineering of deep learning models. For some readers, this may be the
first time that the transformer model, transposed convolution, or visual attention has
been presented clearly. Finally, introducing neural circuit diagrams in an accessible way
will ease the more mathematically dense next chapter and show the motivation for my
abstractions.

2.1 The Philosophy of My Approach

As I am introducing these diagrams, I have a burden to explain how I think they should
be used and to address criticisms of creating a diagramming standard in the first place.
I will take a brief aside to address these points, which I believe will aid in the adoption
of neural circuit diagrams.

These diagrams are intended to express sequential-tensor deep learning models. This is
in contrast to machine learning or artificial intelligence systems more generally. Deep
learning models are machine learning models with sequential data processing through
neural network layers. I do not cover recursive or branching models in this work. Fur-
thermore, I assume data is always in the form of tuples of tensors. Generalizing diagrams
to further contexts is an exciting avenue for future research.
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By making these assumptions, I develop diagrams specialized for some of the most
essential but difficult-to-explain systems in artificial intelligence research. Researchers
outside the narrow scope of sequential-tensor deep learning models often rely on these
tools. By more clearly communicating them, researchers who may not be up to date on
the latest innovations or aware of their options stand to benefit an immense deal.

I do not expect two independent teams to diagram architectures the exact same way.
Indeed, I do not believe the appropriate diagramming framework would have this prop-
erty. Diagrams should have the flexibility to allow for innovations and to appeal to the
audience’s level of knowledge. Instead, the benefit of my framework is to have compre-
hensive, robust diagrams with clear correspondence to implementation and analysis, in
contrast to ad-hoc diagrams, which often fail to include critical information.

Neural circuit diagrams can be decomposed into sections that allow for layered ab-
straction. The exact details of code can be abstracted into single-symbol components.
Sections of diagrams can be highlighted for the reader’s clarity, and repeated patterns
can be defined as components. Diagrams have an immense compositional structure. The
horizontal axis represents sequential composition, and the vertical axis represents par-
allel composition. Sections and components can be joined like Lego bricks to construct
models.

This sectioning allows for a close correspondence between diagrams and implementa-
tion. Every highlighted section becomes a module in code. Diagrams, therefore, pro-
vide a cross-platform blueprint for architectures. This allows implementations to be
cross-checked to a reference, increasing reliability. Furthermore, which components are
abstracted and the level of abstraction can vary depending on the audience, leading to
clearer, specialized communication.

A common criticism is that introducing a new standard simply increases the number
of standards, worsening the issue trying to be solved (below). I do not believe this
is a relevant critique for deep learning diagrams. Currently, there are no standard
diagramming methods. Every paper, in a sense, has its own ad-hoc diagramming scheme.
Compared to this, neural circuit diagrams only need to be learned once, after which
architectures can be clearly and explicitly explained. Furthermore, they build on existing
research on robust monoidal string diagrams, which have been found to be a universal
standard for various fields (Baez and Stay, 2010).
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2.2 Reading Neural Circuit Diagrams

2.2 Reading Neural Circuit Diagrams

2.2.1 Commuting Diagrams

We aim to craft diagrams that precisely represent deep learning algorithms. While
these diagrams will eventually be generalized, we will initially concentrate on common
models. Specifically, we will explore models that successively process data of predictable
types. To facilitate understanding, we will introduce diagrams of gradually increasing
complexity. To begin, let’s delve into an intuitive diagram, where symbols represent
data types, and arrows signify the functions connecting them.

Note, I use forward composition with “;”, meaning f : str → int composes with g : int → float
by (f ; g) : str → float.

Figure 2.1: We have two functions: f : str → int and g : int → float. These functions
can be composed into a single function (f ; g) : str → float. In commuting diagrams, we
represent data types, such as str, int, and float, with floating symbols, while functions
are denoted by arrows connecting them.

2.2.2 Tuples and Memory

Algorithms are rarely composed of operations on a single variable. Instead, their steps
involve operations on memory states composed of multiple variables. The data type of
a memory state is a tuple of the variables which compose it. So, a state containing an
int and a str would have a type int× str.

Figure 2.2: Here, I diagram two functions, f : B × C → D and g : A × D → E,
acting together. To represent the full memory states, we are required to amend f into
Id[A]× f : A× (B × C) → A×D

Consider a single algorithmic step acting on a compound memory state A × B × C. A
function f : B × C → D acting on this memory state would give an overall step with
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shape Id[A] × f : A × (B × C) → A ×D. Note, that Id[A] is the identity. We need to
indicate A, even though f does not act on it, so that the initial and final memory states
are properly shown. In Figure 2.2, I diagram f along another function g : A×D → E.

2.2.3 String Diagrams

These commuting diagrams fall short, however. As algorithms scale, operations and
memory states get more complex. Usually, functions only act on some variables. How-
ever, it is not clear how to these targeted functions. Compound data types and compound
functions are better suited by reorienting diagrams as in Figure 2.3. We will have hor-
izontal wires represent types, and symbols represent functions. Diagrams are forced to
horizontally go left to right.

Figure 2.3: We reorient diagrams to go left to right. Wires represent data types, and
symbols represent functions. This expression defines h.

This reorientation allows us to represent compound types and functions easily. We can
diagram tupled types A × B as a wire for A and a wire for B vertically stacked, but
separated by a dashed line. For increased clarity, we can draw boxes around functions.
In Figure 2.4, we see a clear reexpression of Figure 2.3. Here, we have the unchanged A
variable untouched by f , which acts only on B × C.

Figure 2.4: Tupled data types are diagrammed with wires separated by dashed lines.
This clearly shows when functions act on only some variables.

Every vertical section of a diagram represents something. Either, it shows which data
type is present in memory, or which function is applied at this step. Diagrams can
always be decomposed into vertical sections, each of which must compose with adjacent
sections to ensure algorithms are well-defined. Diagrams can also be split along dashed
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2.2 Reading Neural Circuit Diagrams

lines. Diagrams are built from these vertically and horizontally composed sections, with
wires acting like jigsaw indents.

2.2.4 Tensors

Diagrams will be specialized to represent tensors. Memory states will be tuples of tensors.
Tensors are numbers arranged along axes. So, a scalar R is a rank 0 tensor, a vector
R3 is a rank 1 tensor, a table R4×3 is a rank 2 tensor, and so on. If our diagram takes
tensor data types, we get something like Figure 2.5.

Figure 2.5: Similar to Figure 2.4, but with data types being tensors.

However, we benefit from diagramming the details of axes. Instead of diagramming a
wire labeled Ra×b, we diagram a wire labeled a and a wire labeled b, without a dashed
line separating them. This lets us diagram Figure 2.5 into the clear form of Figure 2.6.

Figure 2.6: We can diagram types Ra×b as two wires labeled a and b, without a dashed
line separating them. (See cell 2, Jupyter notebook.)

2.2.5 Indexes

Values in tensors are accessed by indexes. A tensor A ∈ R4×3, for example, has con-
stituent values A[i4, j3] ∈ R, where i4 ∈ {0 . . . 3} and j3 ∈ {0 . . . 2}. Indexes can also be
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used to access subtensors, so we have expressions A[i4, :] ∈ R3. This subtensor extrac-
tion is therefore an operation R4×3 → R3. We diagram it by having indexes act on the
relevant axis. Indexes are diagrammed with pointed pentagons, or kets | ⟩. This type of
subtensor extraction is diagrammed according to Figure 2.7.

Figure 2.7: We diagram indexes with pointed pentagons labeled with the index being
extracted. (See cell 3, Jupyter notebook.)

Figure 2.8: These subtensors are defined such that A[i4, :][j3] = A[i4, j3]. This expression
is the same in the reverse order. (See cell 4, Jupyter notebook.)

2.2.6 Broadcasting

Broadcasting is critical to understanding deep learning models. It lifts an operation to
act in parallel over additional axes. Here, we show an operation G : R3 → R2 lifted to
an operation R4 × 3 → R4 × 2. We diagram this broadcasting by having the 4-length
wire pass over G, adding a 4-length axis to its input and output shapes. This is shown
in Figure 2.9.

Inner broadcasting acts within tuple segments. A R4×3 × R4 collection of data can be
reduced to R3 × R4 in 4 different ways. Therefore, there are 4 ways of applying an
operation H : R3 ×R4 → R2 to it. This gives a function lifted by “inner broadcasting”,
which has a shape R4×3 × R4 → R4×2. We diagram this by drawing a wire from the
source tuple segment over the function, as shown in Figure 2.10. This adds an axis of
equal length to the target tuple segment and to the output, reflecting the shape of the
lifted operation.

Broadcasting naturally represents element-wise operations. A function on values f :
R1 → R1, when broadcast, gives an operation R1 × a → R1 × a. One length axes do
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Figure 2.9: An operation is lifted over a 4-length axis by broadcasting. This applies G
over corresponding subtensors. (See cell 5, Jupyter notebook.)

Figure 2.10: Lifting an operation within a tuple segment gives inner broadcasting. We
diagram it by having a wire from the target tuple segment over the function, reflecting
the shape of the lifted function. (See cell 6, Jupyter notebook.)

not change the shape of data, and can be freely amended or removed from pre-existing
shapes by arrows. This means we diagram element-wise functions by drawing incoming
and outgoing arrows, which represent the amendment and removal of a 1-length axis.
This is shown in Figure 2.11.

Figure 2.11: Element-wise
operations can be naturally
shown with broadcasting.
(See cell 7, Jupyter note-
book.)
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2.2.7 Linearity

Linear functions are an important class of operations for deep learning. Linear functions
can be highly parallelized, especially with GPUs. Previous works have shown how graphi-
cally modeling linear functions, and reimplementing algorithms can improve performance
(Xu et al., 2023). Linear functions have immense regularity. Standard monoidal string
diagrams rely on these properties to provide elegant graphical languages for various fields
(Baez and Stay, 2010).

Figure 2.12: A subset of
functions between Ra to Rb

are linear, obeying additiv-
ity and homogeneity. This
class of functions are closed
under composition and has
many important composi-
tion properties.

However, a pure monoidal string diagram has difficulty representing non-linear opera-
tions, a noted issue (Chiang et al., 2023). My framework has Cartesian products and
broadcasting, which are not generally analogous to how monoidal string diagrams com-
bine linear functions. However, if we know functions are linear, we can use diagrams
to efficiently reason about algorithms. By focusing on linear functions, we can take
advantage of their parallelization properties.

Figure 2.13: Linear functions are natural with respect to each other and broadcasting.
This means the above equality holds, letting expressions be flexibly rearranged.

Linear functions are required to obey additivity and homogeneity, as shown in Figure
2.12. These operations are closed under composition, so applying linear maps onto each
other gives another linear map. Importantly to us, they are natural with respect to
broadcasting. This means for any two linear functions f and g, the equality in Figure
2.13 holds. This means they can be simultaneously broadcast. This lets a series of linear
functions be efficiently parallelized and flexibly rearranged.
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2.2.8 Multilinearity

There is an important distinction between linear and multilinear operations. Inner
products, for example, are multilinear. The inner product u(x,y) = x · y = Σi x[i]· y[i]
is linear with respect to each input. So, u(x+ z,y) = u(x,y)+u(z,y), and similarly for
the second input. However, it is not linear with respect to element-wise addition over
its entire input and output, as u(x1+x2,y1+y2) ̸= u(x1,y1)+u(x2,y2). Compare this
to copying ∆, which we can show is linear.

∆ : Ra → Ra×a and x,y ∈ Ra, λ ∈ R
∆(x) := (x,x)

∆(x+ y) = (x+ y,x+ y) = (x,x) + (y + y)

= ∆(x) + ∆(y)

∆(λ·x) = (λ·x, λ·x) = λ· (x,x)
= λ·∆(x)

To simultaneously broadcast multilinear functions, we note that every multilinear oper-
ation equals an outer product followed by a linear function. The outer product is the
ur-multilinear operation, taking a tuple input and returning a tensor, which takes the
product over one element from each tuple segment. It is given by ⊗ : Ra × Rb → Ra×b.
All tuple-multilinear functions M : Ra ×Rb → Rc have an associated tensor-linear form
Mλ : Ra×b → Rc such that ⊗;Mλ = M . We diagram the outer product by simply
having a tuple line ending, which will often occur before a host of linear operations are
simultaneously applied.

2.2.9 Implementing Linearity and Common Operations

Key linear and multilinear operations can be implemented by the einops package, leading
to elegant implementations of algorithms. Some key linear operations are inner prod-
ucts, which sum over an axis, transposing, which swaps axes, views, which rearranges
axes, and diagonalization, which makes axes take the same index.

With neural circuit diagrams, we can clearly show these operations. We show inner
products with cups, transposing by crossing wires, views by solid lines consuming and
producing their respective shapes, and diagonalization by wires merging. As these op-
erations are linear, they can be simultaneously applied. The interaction of wires shows
how incoming axes coordinate to produce outgoing axes. The einops package symboli-
cally implements these operations by having incoming and outgoing axes correspond to
symbols.

A good example that combines many of these operations is a section of multi-head
attention shown in 2.14. It employs an outer product, a transpose, a diagonalization,
an inner product, and an element-wise operation. The input to this algorithm is a tuple
of tensors. Axes with an overline are a width, representing the amount of rather than
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detail per thing. Though a complex expression, we can break this figure up as in Figure
2.6 and implement the interaction of wires using einops, shown in Figure 2.15.

Figure 2.14: We can
diagram a portion of
multi-head attention,
a sophisticated algo-
rithm, with clarity
using neural circuit
diagrams.

Implementation using einsum

Implementation using einsum
(with simultaneous broadcasting of linear functions)
# Local memory contains, 
# Q: y k h # K: x k h 
X = einops.einsum(Q, K, 'y k h, x k h -> y x h') 
X = X / math.sqrt(k) 

# Local memory contains, 
# Q: y k h # K: x k h 
# Transpose K, 
Q, K = Q, einops.einsum(K, 'x k h -> k x h') 
# Implicit outer product and diagonalize, 
X = einops.einsum(Q, K, 'y k1 h, k2 x h \ 
                  -> y k1 k2 x h') 
# Inner product, 
X = einops.einsum(X, 'y k k x h -> y x h') 
# Scale, 
X = X / math.sqrt(k) 

Figure 2.15: This section of multi-head attention can be implemented using the einsum
operation. Note the close relationship between diagrams and implementation and how
diagrams reflect the memory states and operations of algorithms. (See cell 8, Jupyter
notebook.)

2.2.10 Linear Algebra

All linear functions f : Ra → Rb have an associated Ra×b tensor that uniquely identifies
them. This hints at the ability to transpose this associated tensor to get a new linear
function, fT : Rb → Ra. To extract these associated transposes, we use the unit. The
unit for a shape a, given by η : R1 → Ra×a, is a linear map which returns r times the
Ra×a identity matrix, for r ∈ R.
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Note that the associated transpose, which sends a linear function f : Rn → Rm to
fT : Rm → Rn by transposing the associated Rn×m tensor, is different to a transpose
operation which sends Rn×m to Rm×n. Associated transposes are used for mathematical
rearrangement and are not usually directly implemented in code, though I provide code
examples in cell 9 of the Jupyter notebook.

The unit and the inner product can be arranged to give the identity map Ra → Ra,
as in Figure 2.16. This identity map can be freely introduced, split into a unit and
the identity matrix, and then used to rearrange operations. For example, this allows
us to convert the linear map F : Ra → Rb×c into F T : Rb×a → Rc. These associated
tensors and transposes can be used to better understand convolution (Section 2.3.3) and
backpropagation (Section 2.3.6).

These rearrangements can transpose specific axes. A linear operation Ra×b → Rc has an
associated Ra×b×c tensor. This tensor can be associated with various linear operations,
such as Rb×a → Rc. These different forms are often of interest to us, as they can
efficiently implement the reverse of operations (see Figure 2.23, 2.28). To extract these
rearrangements, we can selectively apply units and the inner product to reorient the
direction of wires for linear operations.

Figure 2.16: Linear operations have a flexible algebra. Simultaneous operations may
increase efficiency (Xu et al., 2023). As the height of diagrams is related to the amount
of data stored in independent segments, it gives a rough idea of memory usage. This is
further explored in Section 2.3.6. (See cell 9, Jupyter notebook.)
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2.3 Results: Key Applied Cases

2.3.1 Basic Multi-Layer Perceptron

Diagramming a basic multi-layer perceptron will help consolidate knowledge of neural
circuit diagrams and show their value as a teaching and implementation tool. We present
this in Figure 2.17. We use pictograms to represent components analogous to traditional
circuit diagrams and to create more memorable diagrams (Borkin et al., 2016).

import torch.nn as nn 
# Basic Image Recogniser 
# This is a close copy of an introductory PyTorch tutorial: 
# https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html 
class BasicImageRecogniser(nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.flatten = nn.Flatten() 
        self.linear_relu_stack = nn.Sequential( 
            nn.Linear(28*28, 512), 
            nn.ReLU(), 
            nn.Linear(512, 512), 
            nn.ReLU(), 
            nn.Linear(512, 10), 
        ) 
    def forward(self, x): 
        x = self.flatten(x) 
        x = self.linear_relu_stack(x) 
        y_pred = nn.Softmax(x) 
        return y_pred 

Figure 2.17: PyTorch code and a neural circuit diagram for a basic MNIST (digit recog-
nition) neural network taken from an introductory PyTorch tutorial. Note the close cor-
respondence between neural circuit diagrams and PyTorch code. (See cell 10, Jupyter
notebook.)

Fully connected layers are shown as boldface L, with boldface indicating a component
with internal learned weights. Their input and output sizes are inferred from the dia-
grams. If a fully connected layer is biased, we add a “+” in the bottom right. Traditional
presentations easily miss this detail. For example, many implementations of the trans-
former, including those from PyTorch and Harvard NLP, have a bias in the query, key,
and value fully-connected layers despite Attention is All You Need (Vaswani et al., 2017)
not indicating the presence of bias.

Activation functions are just element-wise operations. Though traditionally ReLU since
AlexNet(Krizhevsky et al., 2017), other choices may yield superior performance (Lee,
2023). With neural circuit diagrams, the activation function employed can be checked
at a glance. SoftMax is a common operation that converts scores into probabilities, and
we represent it with a left-facing triangle (◁), indicating values being “spread” to sum
to 1.

As mentioned in Section 1.2, how operations such as SoftMax are broadcast can be
ambiguous in traditional presentations. This is especially worrisome as SoftMax can
be applied to shapes of arbitrary size. On the other hand, my method of displaying
broadcasting makes it clear how SoftMax is applied.
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2.3.2 The Transformer Architecture

In Section 1.2, we identified the shortfalls in Attention is All You Need. We now have the
tools to address these shortcomings using neural circuit diagrams. Figure. 2.18 shows
scaled-dot product attention. Unlike the approach from Attention is All You Need,
the size of variables and the axes over which matrix multiplication and broadcasting
occur is clearly shown. Figure. 2.19 shows multi-head attention. The origin of queries,
keys, and values are clear, and concatenating the separate attention heads using einsum
naturally follows. Finally, we show the full transformer model in Figure. 2.20 using
neural circuit diagrams. Introducing such a large architecture requires an unavoidable
level of description, and we take some artistic license and notate all the additional details.

Figure 2.18: The original equation for attention against my diagram. The descriptions
are unnecessary but clarify what is happening. Corresponds to Equation 1.1 and Figure
1.1.1. (See cell 11, Jupyter notebook.)

Figure 2.19: Neural circuit di-
agram for multi-head atten-
tion. Implementing matrix
multiplication is clear with the
cross-platform the einops pack-
age (Rogozhnikov, 2021). Cor-
responds to Equation 1.2 and
1.3 and Figure 1.1.2. (See cell
12, Jupyter notebook.)
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Neural Circuit Diagram for Transformers
Neural circuit diagrams are a visual and explicit framework for representing deep learning models. Transformer architectures have changed the world, and we provide a novel 
and comprehensive diagram for the original architecture from Attention is All You Need. We describe all necessary components, enabling technically profiicent novices 
who have read our paper to understand the transformer architecture.

Figure 2.20: The entire encoder-decoder architecture from Attention is All You Need
(Vaswani et al., 2017), expressed with neural circuit diagrams. Corresponds to Figure
1.1.3.
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2.3.3 Convolution

Convolutions are critical to understanding computer vision architectures. Different archi-
tectures extend and use convolution in various ways, so implementing and understanding
these architectures requires convolution and its variations to be accurately expressed.
However, these extensions are often hard to explain. For example, PyTorch concedes
that dilation is “harder to describe”. Transposed convolution is similarly challenging to
communicate (Zeiler et al., 2010). A standardized means of notating convolution and
its variations would aid in communicating the ideas already developed by the machine
learning community and encourage more innovation of sophisticated architectures such
as vision transformers (Dosovitskiy et al., 2021; Khan et al., 2022).

In deep learning, convolutions alter a tensor by taking weighted sums over nearby values.
With standard bracket notation to access values, a convolution over vector v of length x
by a kernel w of length k is given by, (Note: we subscript indexes by the axis over which
they act.)

Conv(v, w)[iy] =
∑
jk

v[iy + jk]·w[jk]

The maximum iy value is such that it does not exceed the maximum index for v[iy+ jk].
Starting indexing at 0, we get x − 1 = imax + jmax = y + k − 2, so the length of the
output is therefore y = x− k + 1. Note how convolution is a multilinear operation; it is
linear concerning each vector input v and w. Therefore, it has a tensor-linear form with
an associated tensor, the convolution tensor, that uniquely identifies it.

Conv(v, w)[iy] =
∑
jk

∑
ℓx

(⋆)[iy, jk, ℓx]· v[ℓx]·w[jk]

(⋆)[iy, jk, ℓx] =

{
1 , if ℓx = iy + jk.

0 , else.

We diagram convolution with the below diagram, Figure 2.21. We then transpose the
linear operation into a more standard form, letting the input be to the left, and the
kernel be to the right.

We typically work with higher dimensional convolutions, in which case the indexes act
like tuples of indexes. We diagram axes that act in this tandem manner by placing them
especially close to each other and labeling their length by one bolded symbol akin to a
vector. In 2 dimensions the convolution tensor becomes;

(⋆ 2D)[iy0, iy1, jk0, jk1, ℓx0, ℓx1] =

{
1 , if (ℓx0, ℓx1) = (iy0, iy1) + (jk0, jk1).

0 , else.
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Figure 2.21: Convolution is a multilinear operation, with an associated tensor. This
tensor is transposed into a standard form.

Figure 2.22 shows what convolution does. It takes an input, uses a linear operation to
separate it into overlapping blocks, and then broadcasts an operation over each block.
Using neural circuit diagrams, we now easily show the extensions of convolution. A
standard convolution operation tensors the input with a channel depth axis, and feeds
each block and the channel axis through a learned linear map.

Additionally, we can take an average, maximum, or some other operation rather than a
linear map on each block. This lets us naturally display average or max pooling, among
other operations. Displaying convolutions like this has further benefits for understand-
ing. For example, 1 × 1 convolution tensors give a linear operation Rx → Rx×1, which
we recognize to be the identity. Therefore, 1 × 1 kernels are the same as broadcasting
over the input.

Figure 2.22: Convolution and related operations, clearly shown using neural circuit
diagrams.

Stride and dilation scale the contribution of iy or jk in the convolution tensor, increasing
the speed at which the convolution scans over its inputs. This changes the convolution
tensor into the form of Equation 2.1. We diagram these changes by adding the s or
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d multiplier where the axis meets the tensor as in Figure 2.23. These multipliers also
change the size of the output, allowing for downscaling operations.

(⋆ s, d)[iy, jk, ℓx] =

{
1 , if ℓx = s ∗ iy + d ∗ jk.

0 , else.
(2.1)

y =

⌊
x− d ∗ (k − 1)− 1

s
+ 1

⌋
(2.2)

We often want to make slight adjustments to the output size. This is done by padding
the input with zeros around its borders. We can explicitly show the padding operation,
but we make it implicit when the output dimension does not match the expectation
given the input dimension, kernel dimension, stride, and dilation used.

Stride can make the output axis have a far lower dimension than the input axis. This is
perfect for downscaling. However, it does not allow for upscaling. We implement upscal-
ing by transposing strided convolution, resulting in an operation with many more output
blocks than actual inputs. We broadcast over these blocks to get a high-dimensional out-
put.

Figure 2.23: Stride, dilation, padding, and transposed convolution shown with neural
circuit diagrams.

Transposed convolution is challenging to intuit in the typical approach to convolutions,
which focuses on visualizing the scanning action rather than the decomposition of an
image’s data structure into overlapping blocks. The blocks generated by transposed
convolution can be broadcast with linear maps, maximum, average, or other operations,
all easily shown using neural circuit diagrams.
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2.3.4 Computer Vision

In computer vision, the design of deep learning architectures is critical. Computer
vision tasks often have enormous inputs that are only tractable with a high degree of
parallelization (Krizhevsky et al., 2017). Architectures can relate information at different
scales (Luo et al., 2017), making architecture design task-dependant. Sophisticated
architectures such as vision transformers combine the complexity of convolution and
transformer architectures (Khan et al., 2022; Dehghani et al., 2023).

BatchNorm
& Activate

Figure 2.24: Residual networks with identity mappings and full pre-activation (IdRes-
Net) (He et al., 2016) offered improvements over the original ResNet architecture. These
improvements, however, are often missing from implementations. By making the design
of the improved model clear, neural circuit diagrams can motivate common packages to
be updated. (See cell 13, Jupyter notebook.)

These cases show why clear architecture design is promising for enhancing computer
vision research. Neural circuit diagrams, therefore, are in a unique position to acceler-
ate computer vision research, motivating parallelization, task-appropriate architecture
design, and further innovation of sophisticated architectures.
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Figure 2.25: The UNet architecture (Ronneberger et al., 2015) forms the basis of proba-
bilistic diffusion models, state-of-the-art image generation tools (Rombach et al., 2022).
UNets rearrange data in intricate ways, which we can show with neural circuit diagrams.
Note that in this diagram, I have modified the UNet architecture to pad the input of
convolution layers. To get the original UNet architecture, the xλ values can be further
distinguished as xλ,j , the sizes of which can be added to the legend. (See cell 16,
Jupyter notebook.)

As examples of neural circuit diagrams applied to computer vision architectures, I have
diagrammed the identity residual network architecture (He et al., 2016) in Figure 2.24,
which shows many innovations of ResNets not included in common implementations, as
well as the UNet architecture (Ronneberger et al., 2015) in Figure 2.25, which lets us
show how saving and loading variables may be displayed.

Architectures often comprise sub-components, which we show as blocks that accept
configurations. This is analogous to classes or functions that may appear in code. The
code associated with this work implements these algorithms guided by the blocks from
the diagrams.
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2.3.5 Vision Transformer

Neural circuit diagrams reveal the degrees of freedom of architectures, motivating ex-
perimentation and innovation. A case study that reveals this is the vision transformer,
which brings together many of the cases we have already covered. Its explanations
(Khan et al., 2022, See Figure 2) suffer from the same issues as explanations of the
original transformer (see Section 1.2), made worse by even more axes being present.

With neural circuit diagrams, visual attention mechanisms are as simple as replacing
the y and x axes in Figure 2.19 with tandem y and x axes and setting h = 1. As 1× 1
convolutions are simply the identity, broadcasting a linear map over all of y pixels is a
1× 1-convolution. This leaves us with Figure 2.26 for a visual attention mechanism.

Figure 2.26: Using neural circuit diagrams, visual attention (Dosovitskiy et al., 2021) is
shown to be a simple modification of multi-head attention (See Figure 2.19, Figure 2.14,
cell 32, Jupyter notebook.)

This highly suggestive diagram calls us to experiment with the convolutions’ stride,
dilation, and kernel sizes, potentially streamlining models. The diagram clarifies how
to implement multi-head visual attention with h ̸= 1, especially using einsum similar to
Figure 2.14. Additionally, y does not need to match x. We could have y be image data,
and x be textual data without convolutions.

This case study shows how neural circuit diagrams reveal the degrees of freedom of
architectures and, therefore, motivate innovation while being precise in how algorithms
should be implemented.

2.3.6 Differentiation: A Clear Improvement over Prior Methods

We leave the most mathematically dense part of this work for last. Neural circuit dia-
grams intend to be used for the communication, implementation, tinkering, and analysis
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of architectures. These aims appeal to distinct audiences, and each should conceptual-
ize neural circuit diagrams differently. The theoretical study of deep learning models
requires understanding how individual components are composed into models and how
properties scale during composition. Neural circuit diagrams are highly composed sys-
tems (see Figure 2.6) and thus provide a framework for studying composition. They
have an underlying category, which is not the focus of this work.

Differentiation is an example of a property that is agreeable under composition. Dif-
ferentiation is key to understanding information flows through architectures (He et al.,
2016). The chain rule relates the derivative of composed functions to the composition
of their derivatives and, therefore, provides a case study of how studying composition
allows models to be understood. This analysis, however, is hampered by the fact that
symbolically expressing the chain rule has quadratic length complexity relative to the
number of composed functions.

h′(x) = h′(x)

(g ◦ h)′(x) = (g′ ◦ h)(x)·h′(x)
(f ◦ g ◦ h)′(x) = (f ′ ◦ g ◦ h)(x)· (g′ ◦ h)(x)·h′(x)

This issue of symbolic methods proliferating symbols to keep track of relationships be-
tween objects was noted in the introduction. To understand how differentiation is com-
posed and encourage more innovations like that of identity ResNets, which used differ-
entiation to understand data flows (He et al., 2016), we need a graphical differentiation
method.

Some graphical methods have been developed and applied to understanding differentia-
tion in the context of deep learning, drawing on monoidal string diagrams from category
theory (Shiebler et al., 2021; Cockett et al., 2019). As linearity cannot be completely en-
sured, these graphical methods are Cartesian, not expressing the details of axes. Other
graphical approaches to neural networks could not incorporate differentiation, showing
the significance of neural circuit diagrams being able to incorporate differentiation (Xu
and Maruyama, 2022).

Differentiation, however, has key linear properties. Transposing differentiation is very
important. These prior graphical methods require redefining differentiation for each
transpose, making the relationships between these forms unclear. By detailing tensors
and Cartesian products, my graphical presentation can show these linear relationships
clearly. While drawing on their many theoretical contributions (Shiebler et al., 2021;
Cockett et al., 2019), this work provides a significant advantage over these previous
works.

In addition to theoretical understanding, clearly expressing differentiation is key to effi-
cient implementations. Mathematically equivalent algorithms may have different time or
memory complexities. The graphical linear algebra rules (see Figure 2.16) allow math-
ematically equivalent algorithms to be rearranged into more time or memory-efficient
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forms. To show the potential of neural circuit diagrams, we focus on backpropagation
and analyze its time and memory complexity with neural circuit diagrams.

Modeling Differentiation

To model differentiation, consider a once differentiable function F : Ra → Rb. It has a
Jacobian which assigns to every point in Ra a Ra×b tensor that describes its derivative,
JF : Ra → Rb×a. Functions answer questions, and JF answers how much a function
responds to an infinitesimal change. The questions we ask JF are where is the change
happening (Ra input), how much is it changing by (Rb output axis), and which direction
are we moving in (Ra output axis). Inner products over the output axes “ask” these
questions. The chain rule can be defined with respect to the Jacobian and is diagrammed
in Figure 2.27.

Figure 2.27: The chain rule expressed symbolically with index notation, and with neural
circuit diagrams.

This expression is convoluted, and will struggle to scale. Instead, we transpose JF into
the forward derivative as per Cockett et al. (2019)’s definition 4. This form is more
agreeable for the chain rule, and is the first transpose we employ.

Figure 2.28: Definition of the forward derivative, and how functions compose under it.

This naturally scales with depth. Furthermore, we can define a ( , D ) functor, a com-
position preserving map, from once differentiable functions F : Ra → Rb to (F,DF ) :
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Ra×Ra → Rb×Rb. Per the chain rule, ( , D )[F ;G] = ( , D )F ; ( , D )G. This is shown
in Figure 2.29.

Figure 2.29: We have a composition preserving map, the ( , D ) functor, that maps
vertical sections to vertical sections, implementing the chain rule.

Figure 2.30: We turn a small chain rule expression into an optimization function by
applying the inner product over the target direction and derivative output. An inner
product over an axis of length 1 is just multiplication. Using the unit, we run this
algorithm for every input degree of freedom, broadcasting over the a axis.

This composes elegantly. However, when optimizing an algorithm, we are not interested
in how much a known infinitesimal change will alter an output. Rather, given some
target change in output, we are interested in which direction will best achieve it. We
can do this by calculating the change in the output for each element of a in parallel,
effectively running the algorithm multiple times. This is done by applying the unit and
broadcasting. Furthermore, we sum the infinitesimal change over some target Rc value.
The inner product does this. For an algorithm F ;L, where L is a loss function to R1,
we can do optimization according to Figure 2.30.
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However, the forward derivative has large time complexity. A linear function gives
matrix multiplication. Therefore, a linear map f : Ra → Rb applied onto Ra will require
a× b operations. In general, broadcasting multiplies time and memory complexity. The
memory usage of an algorithm is related to the number of elements it stores at any
step in the algorithm. We use these tricks to analyze the order of the time and space
complexity for the above process.

Figure 2.31: An analysis of the
space and time complexity of the
naive optimization algorithm.

We observe that this has a high time complexity, quadratic with respect to the size of
X. In practice, we avoid the forward derivative, also called the Jacobian-vector product
or JVP, in favor of the reverse derivative, or VJP, which more directly implements the
above process. We define it in relation to the Jacobian and forward derivative in Figure
2.32. In Figure 2.34, we use the rules of linear algebra to re-express the optimization
algorithm in terms of the forward derivative and show the far lower memory and time
complexity required.

Figure 2.32: The definition of the for-
ward and reverse derivative with re-
spect to the Jacobian. This aligns with
the Jacobian-vector product and the
vector-Jacobian product, respectively.
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Figure 2.33: A full expression of how the
unit and the forward derivative give the
Jacobian. This demonstrates how linear
algebra principles can illustrate the rela-
tionships between different forms of the
derivative.

Figure 2.34: Using the previously developed linear algebra rules (see Figure 2.16, we
rearrange the optimization algorithm to use the reverse instead of the forward derivative.
This reveals the performance advantages of backpropagation.

2.4 Conclusion

Neural circuit diagrams improve the communication and analysis of deep learning archi-
tectures. Accessible to a wide range of users, they provide comprehensive descriptions
of algorithms. Neural circuit diagrams have applied utility. Future work can see them
extended to other architectures and have the initial family of symbols presented here
improved and standardized.

Explicitly developing their mathematical foundation will associate every diagram with a
precise mathematical expression to be analyzed and dissected. Extending neural circuit
diagrams to consider the training of hidden parameters (Fong et al., 2019; Cruttwell
et al., 2021) or the mechanics of information (Perrone, 2022) is possible within a category
theory framework. However, we must first develop this foundation, which will be the
focus of the next chapter.
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Chapter 3

Theory of Functor String Diagrams

So far in this work, we have outlined the case for why deep learning requires improved
communication and why category theory is a natural solution to this problem. Then, I
presented neural circuit diagrams as an accessible graphical framework that can clearly
communicate architectures. Now, I move onto establishing a robust foundation for neural
circuit diagrams. This build on the diagrammatic scheme introduced by Marsden (2014)
and extended by Nakahira (2023). Their approach has the most promise for providing a
framework that can show both the details of axes and independent data. However, their
approach needs to be further developed, and I spend this chapter contributing additional
tools to reason about these functor string diagrams. Then, I do an in-depth study of
broadcasting and, finally, reconcile functor string diagrams with neural circuit diagrams,
placing them on a robust mathematical basis.

3.1 Building Blocks

First, we will lay out the basic elements of diagrams and two key principles that guide
their design. Previous functor string diagram approaches have relied heavily on colors
and symbols to express details (Marsden, 2014; Nakahira, 2023). My approach, on the
other hand, centers on graphical intuition. Nonetheless, the diagrams, as laid out here,
are able to prove theorems. In this section, I contribute this graphically intuitive per-
spective, which aims to improve the usefulness and adoption of functor string diagrams.

Contributions

In this section, I introduce functor string diagrams. Building on previous works, my
presentation focuses on two key principles: the principle of vertical decomposition and
the principle of equivalent expression. Centering these two principles allows even com-
plex expressions to be decomposed and understood, and provides us a framework to
consistently extend diagrams to new situations.
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3.1.1 Categories

Staircase Notation We will often be using staircase notation. Morphisms f ∈ C(a, b)
or f : a → b may be written fa

b , which conveniently keeps track of objects and lets
us distinguish between morphisms similarly defined for many objects. For example,
identities are written as Idaa. Additionally, we will use forward composition with “;”
instead of backwards composition with “◦” so that the direction of symbolic expressions
align with the direction of diagrams.

Definition 1 (Categories, objects, morphisms). A category C consists of;

• A collection of objects, a, b, c, etc. ∈ Ob(C).

• Between any two objects a, b ∈ Ob(C), a collection of morphisms fa
b , g

a
b , h

a
b , etc. ∈

C(a, b) between a and b. The first object is called the domain or source, and the
latter is called the codomain or target.

• Composition, written as fa
b ; g

b
c = (f ; g)ac , which maps C(a, b)× C(b, c) → C(a, c).

– Which is closed, fa
b ; g

b
c ∈ C(b, c)

– Which is associative, fa
b ; (g;h)

b
d = (f ; g)ac ;h

c
d,

• An identity for every object, Idaa ∈ C(a, a) such that Idaa; f
a
b = fa

b = fa
b ; Id

b
b;

Anything which satisfies these conditions forms a category. The canonical example
is Set, the category with sets as objects and functions between them as morphisms.
However, we could just as easily have the category of relations Rel, which has sets as
objects and relations between them as morphisms, allowing multiple outputs for each
input. Other categories could express some specific property without direct analogy to
sets and functions. For example, the preorder on N has natural numbers as objects and
a morphism ⩽: a → b whenever a ⩽ b. Composition, then, follows from a ⩽ b and b ⩽ c
implying a ⩽ c.

Categories are composed of objects, morphisms, and equivalences. A category is seeded
with morphisms that recursively define further morphisms through composition. This,
however, may generate many long but useless expressions. So, categories need equiva-
lence relations to be useful instead of just being an exercise in symbolic construction.
Equivalence relations are, therefore, the “third component” of categories besides objects
and morphisms.

Fundamentally, maps give a single output for each input. This means the amount of
outputs is less than or equal to the amount of inputs. The composition map, C(a, b) ×
C(b, c) → C(a, c), is no different. In addition to implicitly indicating composition is
closed, it notifies us composition may remove information about the inputs, imposing
equivalence relations.

Categories form a type of symbolic grammar. Objects (syntax) indicate which mor-
phisms (vocabulary) can be applied, and equivalences (meaning) indicate which expres-
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sions are the same. This lets categories be perceived as purely symbolic constructs that
almost coincidentally reflect the real world. This may seem needlessly abstract but
it is about as good a description of mathematics generally as it is of category theory
specifically.

This symbolic view grants us enormous flexibility to explore and question mathematical
structures. For example, every category C has a dual category Cop. In the dual category,
morphisms f : a → b become morphisms f † : b → a. Everything is reversed. What this
category represents may not be clear, for example, what is Setop? Reverse functions?
However, its objects, morphisms, and equivalence relations can be perfectly expressed.
All composition and equivalence relations are simply reversed.

Because of cultural conventions, we are more used to thinking in terms of sets than cat-
egories. However, categories can give richer insight. They encompass sets by including
the unit object 1 in Set, meaning that the elements of a set a correspond to the mor-
phisms Set(1, a). Functions (morphisms in Set) on elements x1a; f

a
b produce elements in

the target set, (x; f)1b ∈ Set(1, b). Shared patterns and important distinctions between
elements, functions, and different categories can be carefully and consistently expressed
using category theory, opening up powerful generalization tools.

3.1.2 Commutative Diagrams

The importance of equivalences to understanding categories gives rise to our first formal
diagrams, commutative diagrams. With commutative diagrams, objects are symbols,
anchoring morphisms which are arrows between them. If any two paths have the same
origin and destination, and one path has more than one arrow, then the morphisms
along those paths are equivalent (Abramsky and Tzevelekos, 2010, p. 11). The diagram
“commutes”. For example, Figure 3.1 contains a diagram that indicates that f ; g = h =
i; j, and another that shows f ; g = f ;h, but not g = h.

Figure 3.1: A commuting diagram showing f ; g = h = i; j, and another where f ; g = f ;h,
but not g = h.

3.1.3 String Diagrams

Just like in Chapter 2, typical commutative diagrams fall short and fail to express key
insights clearly. They tend to assemble a host of symbols and have no obvious way of
representing functors, composition-preserving maps between categories, or natural trans-
formations, composition-preserving maps between functors. Exclusively using them, we
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would miss out on many insights that category theory offers. Just as in the previous
chapter, we move on to string diagrams.

Definition 2 (String diagrams). In string diagrams, the composition of morphisms in
an arbitrary category are shown by arranging composed morphisms horizontally such
that,

• Morphisms are represented by symbols,

• Morphisms are interspersed by representations of the current object,

• The current object must match the codomain of the morphism to the left, and the
domain of the morphism to the right,

• Objects are represented by labeled horizontal wires,

• Identity morphisms are represented by labeled horizontal wires,

Therefore, every vertical section must give an object or morphism expression which com-
poses.

These diagrams are one-dimensional and have clear composition rules. Diagrams can
be decomposed into vertical sections. Each vertical section can be understood in isola-
tion, and a well-formed overall diagram follows as long as each isolated vertical section
composes with adjacent ones.

Figure 3.2: A basic string diagram emphasizing how diagrams can be decomposed into
vertical sections and how these vertical sections relate to symbolic expressions.

I aim to develop a first-principles approach to understanding diagrams. This will allow
them to be extended to new situations with ease, and understood even when they seem
highly complex.

The fundamental structure of string diagrams gives us the principle of vertical section
decomposition. Every diagram can be decomposed into vertical sections which must
compose. Vertical sections ultimately decompose into alternating object and morphism
expressions that can be clearly understood in isolation. This principle can be used to
understand any string diagram, and we will preference perspectives that enable it.
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Principle 1 (Vertical Section Decomposition). All string diagrams in a category
C can be decomposed into vertical sections, each with incoming and outgoing wires.
A diagram is well-formed if wires of adjacent sections match. Each vertical section
maps to either a morphism in the category or an object in the category. Diagrams
ultimately decompose into alternating object and morphism vertical sections.

The principle has to be kept in mind when trying to understand diagrams. Aspects
which might not seem to obey it, such as wires turning backwards in the case of linearity
(see Section 2.2.7) can still be understood as one vertical section with two parallel wires
and another vertical section merging them. Every diagram can be decomposed, and
ultimately understood. Sticking to this principle will allow diagrams to handle a great
deal of complexity.

3.1.4 Functors

The focus of category theory is composition. Functors are maps on objects and mor-
phisms that preserve composition, and are therefore of immense interest to us. Using
string diagrams and the principle of vertical section decomposition, we could diagram an
expression employing functors such as F [f ; g] = F [f ];F [g] as Figure 3.3. However, this
gives little insight. Though the diagrams are built from well-composed vertical sections,
the unique behavior of functors is unclear.

Definition 3 (Functors). A functor is a map between categories F : C → D that provides;

• A map between objects, F : Ob(C) → Ob(D);

• A map between homsets, F : C(a, b) → D(Fa, Fb);

– Which preserves composition, F
[
fa
b ; g

b
c

]
Fa
Fc = F [fa

b ]
Fa
Fb ;F

[
gbc

]
Fb
Fc. This im-

plies the identity is preserved, F [Idaa]
Fa
Fa = IdFa

Fa;

Figure 3.3: A basic string diagram, expressing the composition of functor-ed morphisms.

As functors act on both objects and morphisms, we will diagram them similarly for
both. This is done with a labeled horizontal line passing over the target morphism, as in
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Figure 3.4. When diagrams are vertically decomposed, we interpret an F functor wire
above an expression f as equivalent to drawing Ff directly. Therefore, we see how the
principle of vertical decomposition helps us understand any diagram as vertical sections
that can be understood in isolation.

Functor wires build on the second principle of our diagrams, equivalent expression. Ad-
ditional notation will mostly be equivalent ways of expressing something that could be
done by one dimensional string diagrams. For example, functor wires F add an addi-
tional wire, a new feature. However, an F functor wire over f could have been written
as Ff without an additional line. Therefore, the additional line can be understood as
clarifying diagrams and their properties rather than fundamentally changing what they
express and how they are read.

Figure 3.4: An equivalent
expression of Figure 3.3 rep-
resenting functors as wires.
The feature of drawing func-
tors as wires is an equivalent
expression that aids graphi-
cal regularity.

Principle 2 (Equivalent Expression). Additional features in diagrams, from func-
tor wires to arrows, are equivalent means of expressing pre-existing concepts. New
features are designed to support graphical intuition, especially regarding equivalence
relations.

Applying the F : C → D functor to a diagram in C gives us a diagram in D. Vertical
sections that give objects and morphisms in C are mapped to vertical sections that
give objects and morphisms in D. We can then diagram morphisms from the objects
Fa, Fb ∈ D which are not present in the image of the functor. Recall that as long
as every vertical section indicates an object or morphism that composes, diagrams are
well-defined. By the principle of equivalent expression, if F maps a ∈ C to α ∈ D, then
a wire labeled α is the same as a wire labeled a with an F functor wire above it.

3.1.5 Natural Transformations

Functor wires are distinct from underlying object wires. We cannot directly apply mor-
phisms from the base category onto them. However, they can accept natural transfor-
mations, which are composition-preserving maps between functors.

Natural transformations give a map between two functors F,G : C → D. They allow an
expression using one functor to be turned into an expression using the other. This is
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Figure 3.5: By the principle of equivalent expression, a morphism h : α → β can be
diagrammed as h : Fa → Fb if Fa = α and Fb = β. The Fa and Fb labeled wires can
be equivalently expressed by wires labeled a and b with an F functor wire above. We
can do this even if hαβ is not in the image of F .

achieved by having morphisms called components in D between corresponding objects
from C.

Definition 4. A natural transformation η : F → G between two functors F : C → D,
G : C → D provides;

• For each object in C, a morphism ηFa
Ga in D called a component,

• Such that for all morphisms fa
b in C, it holds that FfFa

Fb ; η
Fb
Gb = ηFa

Ga;GfGa
Gb . This is

equivalent to the diagram commuting for each fa
b ,

Or, using functor string diagrams,

Graphical isotopy (Selinger, 2009) is the idea that certain graphical transformations of
diagrams give equivalence relations. The above diagram gives a sort of isotopy; compo-
nents can “pass through” morphisms. Furthermore, components are defined for every
object and so do not need to reference their underlying object. We develop an equivalent
expression for natural transformations that clarifies diagrams, only drawing them on the
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F → G wire without referencing the underlying object. Shifting this component symbol
horizontally gives an equivalence relation.

Figure 3.6: Natural transformations can act on the functor wire. The diagrams on
the right can be deciphered by vertical section decomposition. Natural transformations
acting on the functor wire F → G are an additional feature that are defined as an
equivalent expression for a component η[a] : Fa → Ga, where a is the underlying object.

This framework shows how isotopy and natural transformations are closely related. Iso-
topy means movement gives equivalence relations. As natural transformations are slid
along a functor wire, we get diagrams which are mapped to different expressions. As
components are defined for every underlying object, these expressions exist. Naturality
tells us there is an equivalence relation between these expressions.

We can now outline the broad behavior of functor string diagrams.

Definition 5 (Functor string diagrams). Functor string diagrams are string diagrams
with the additional properties that,

• Functors are represented by wires above the objects or morphisms they are acting
on,

• Natural transformation components are represented by the natural transformation
acting on functor wires without referencing the underlying base object.

Figure 3.7: Here, we have a morphism with
multiple functor wires present. Using the prin-
ciple of equivalent expression, this can be re-
expressed into an easier-to-understand form.

In functor string diagrams, the case of multiple functors is easy to manage. Functors are
shown by being placed above the objects or morphisms they act on. As we see below,
this definition holds just as well for a functor placed directly on some f : a → b, or for
a functor placed over Fg : FGa → Fb. This is shown in Figure 3.7. Functor wires are a
new feature that abides by the principle of equivalent expression. This means complex
diagrams can be understood by breaking them down into objects and morphisms in the
underlying category.
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3.2 Reasoning with Diagrams

My diagrams aim to provide clear, explicit graphical expressions to understand deep
learning and other systems better. Therefore, we want diagrams to allow for graphical
reasoning. They should intuitively suggest ways to rearrange expressions and allow us
to explore properties that are difficult to intuit in a forest of symbols.

The previous works on string diagrams have developed some reasoning tools. The work
by Marsden (2014) uses subdiagrams to consider Cartesian products and representable
functors. However, the subdiagrams do not stem from a unified approach or provide
much graphical intuition. Nakahira (2023) builds on this work, creating a comprehensive
framework to consider a variety of category theory constructs.

My approach builds on these works by creating a general language that can consider
families of expressions and then integrate them into diagrams. This lets us deal with
certain ideas in an explicit manner by considering a type of lambda calculus using di-
agrams. This is a powerful framework that lets new operations be graphically defined
and reasoned with.

I follow our established principles, including ensuring all diagrams can be decomposed
into vertical sections and that new features graphically suggest equivalences. Reasoning
with functor string diagrams is novel, and by contributing clearer graphical presentations,
I provide a valuable new perspective to this nascent field.

As this section develops a method to reason with diagrams using category theory, there
is potential for future work to integrate this approach into other works on logic and
category theory (Awodey, 2010). This would be an interesting avenue for future research
but is not the focus of this thesis.

Contributions

In this section, I build on the works of Marsden (2014) and Nakahira (2023) by letting
diagrams reason about families of expressions. This lets new operations be graphically
defined. This allows for more explicit reasoning with diagrams, letting them be robustly
extended.

We use these tools to understand hom-functors and families of diagrams in the category
of Set. Using them, I contribute a graphical derivation of the Yoneda lemma using my
tools. The Yoneda lemma is a central result of category theory; letting it be intuitively
understood contributes to a more widespread application of category theory tools.

3.2.1 Families

Morphisms in a category are expressions that derive meaning from how they behave
when amended with other morphisms. To define a morphism, therefore, we need to
consider its behavior under all possible amendments.
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3 Theory of Functor String Diagrams

To define and reason about morphisms, we need the tools to discuss collections of expres-
sions. This is done with families of expressions. An I-family is a map from a collection
I, called the index collection, to some expression. In the context of category theory,
this is usually morphism. So, an I-family expression in a category C would be a map
I → C(a, b). If two family expressions are equivalent, then they must be equivalent for
every i ∈ I.

Each diagram gives a morphism from the object on the left to the object on the right.
We can, therefore, represent families of expressions by families of diagrams. For example,
we can define the natural transformation property by equating two families of diagrams,
shown in Figure 3.8. Naturality has to hold over every underlying morphism, so the
index collection are the morphisms f : a → b in the underlying category.

Figure 3.8: Here, natural transformations are defined by equating two families of dia-
grams. As families of diagrams are generally maps I → C( , ), in this case the families
are maps C(a, b) → D(Fa,Gb). To be equal, the families must be equivalent for every
f ∈ C(a, b).

3.2.2 Generating Objects

The category of Set can support particularly powerful logic, owing to the existence of
a generating object. A generating object g in C uniquely identifies morphisms. So,
if ega; f

a
b = ega;h

a
b for all ega ∈ C(g, a), then fa

b = hab . We recognize this as a family
expression, shown with the diagram in Figure 3.9.

The generating object g is an object. However, morphisms from it are akin to how
we typically think about elements. When diagramming generating objects, we benefit
from not drawing their wires. This equivalent expression adds graphical intuition to
diagrams by letting us think in terms of elements. Furthermore, this feature is clear.
When we decompose a diagram into vertical sections, we know a generating object is
present wherever the vertical sections are empty.

In a category with a generating object, morphisms a → b can be represented by family
expressions from C(g, a) to C(g, b). Therefore, we can use these family expressions as
morphisms in diagrams. In this case, the index object a becomes a wire on the left, and
the b wire on the right of the diagrams is continued. The generic symbol λe is now a
pending substitution. This gives a lambda calculus of diagrams, with the composition
of family expression diagrams being a substitution.

As an exercise, we can show how lambda-calculus expressions compose. With a gener-
ating object, we can expand f : a → b over generating morphisms e : g → a.
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3.2 Reasoning with Diagrams

Figure 3.9: In a category with a generating object g, morphisms f : a → b are uniquely
identified by their action on all the generating objects e : g → a of their source object.
Therefore, if two morphisms generate the same g → b values for every g → a element,
they are equal.

Composition moves inside diagrams, giving one expression for h; f .

Alternatively, we can compose h; f using the lambda calculus rules.

In Set, this generating object is 1, the set with one element. The collection of morphisms
Set(1, a) correspond to the elements of the set a. Functions are identified by how they
map elements and are equal if they map elements the same way, meaning 1 is a generating
object.
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3 Theory of Functor String Diagrams

The generating object 1 in Set offers free construction, meaning a morphism a → b can
be constructed to correspond to any family expression C(1, a) → C(1, b). In addition to
identifying morphisms as generating objects usually do, in Set family expressions from
the generating object can construct morphisms.

3.2.3 Hom-Functors

A category C is called “locally small” if the collection of morphisms between any two
objects, C(a, b), forms a set. A family of diagrams in C indexed over morphisms a → b,
and producing morphisms c → d, is a family C(a, b) → C(c, d). If C is locally small, then
this family is a function in Set.

Families of diagrams in a locally small category C therefore define functions in Set. A
particular application of this is for hom-functors. A hom-functor C(a, ) : C → Set built
from a ∈ Ob(C) maps objects Ob(x) ∈ C to C(a, x), their hom-set in Set.

To diagram the functor C(a, ), instead of labeling a wire with C(a, ), we label a wire
with a and have an arrow going right to the left. This equivalent expression supports
graphical intuition, as we will soon see.

For an object a and a morphism g : x → y, we define a function in Set of the form
C(a, g) : C(a, x) → C(b, y) by the diagram in Figure 3.10.

Figure 3.10: With g : x → y ∈ C, we have C(a, g) : C(a, x) → C(b, y), a function between
sets. The diagram on the right is a family expression C(a, x) → C(a, y). Therefore, it
defines this function.

The question is whether this lifting is a functor. This would require C(a, f); C(a, g) =
C(a, f ; g). We can test this using the diagrams and the logical rules we have developed.
To prove that C(a, ) is a functor, we need to prove that it preserves composition. We
expand the definition of C(a, g) : C(a, x) → C(a, y).
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We interrogate composition by expanding the lambda calculus expressions. Here, the
second λf can be replaced by the λf ; g from the first expansion.

The g and h terms can be internally composed. The λf term is still pending, meaning
that the expression is a hom-functored expression. This proves that C(a, g); C(a, h) =
C(a, g;h), meaning C(a, ) is a hom-functor.

Consider pre-composing the definition of a hom-functor from Figure 3.10 with some
h : a → x expressed as an element of C(a, x), h : 1 → C(a, x). This is shown at the
top of Figure 3.11. In the diagram on the right, h : 1 → C(a, x) gets indexed to the
morphism h : a → x. The index has been chosen, so the diagram becomes a morphism
from 1 → C(a, y). This diagram gives the hom-rules which we will often use.

3.2.4 Graphical Yoneda Lemma

The Yoneda lemma is a central result of category theory. Natural transformations are
powerful but difficult to derive, and the Yoneda lemma offers a rare opportunity to
enumerate and classify them. The Yoneda lemma makes a statement about the natural
transformations between a hom-functor and any other functor to Set.

Therefore, proving and understanding it requires clear expressions of properties specific
to hom-functors and general properties that hold for functors. Additionally, it requires
understanding several correspondences, such as that between the identity morphism
Idaa ∈ C(a, a) and the element Id1aa ∈ Set(1, C(a, a)).

To understand the Yoneda lemma, we need a range of tools. We need to clearly see func-
tors and natural transformations, and how they interact with objects and morphisms.
Correspondences need to be clear. Furthermore, we need to be able to define new
functions in Set by referring to known expressions. Throughout this work, I have been
presenting tools which allow for this understanding. Being able to derive and understand
the Yoneda lemma clearly was an explicit goal of this work.
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Figure 3.11: The rectangle around morphisms makes expressions clearer. It is purely
aesthetic. We pre-compose Figure 3.10 with a specific value. Then, observe how the
right-hand side is equivalent to various expressions. This means the corresponding ex-
pressions on the left must be equal. This derives the hom-rules, and they let us graphi-
cally intuit the behaviour of hom-functor wires.

Typical approaches involve symbolic or commutative diagram expressions. An example
is from Awodey (2010), on page 195. The Yoneda lemma is proven over four and a
half pages, has six commutative diagrams, and includes a nine-line symbolic equality
expression block. Though such proofs are rigorous, symbols and commutative diagrams
disrupt intuition about the proof and the result we ultimately derive.

A more diagrammatic approach is offered by Ochs (2020). That work develops a dia-
grammatic scheme. However, I feel vertical decomposition offers easier-to-understand
expressions than networks of symbols and arrows. Furthermore, family expressions are
often more clear and powerful when relating concepts than arrows between arrows.

The approach most similar to mine is from Nakahira (2023). My work builds on his.
However, my principles of vertical decomposition and equivalent expression aid in un-
derstanding diagrams and building intuition. Furthermore, my family expressions allow
new functions in Set to be clearly defined and related to others. The dotted boxes
employed by Nakahira are less explicit than my family expression approach, while my
symbolic correspondence is more liberal but aids intuition.

The Yoneda Lemma

Theorem 1 (The Yoneda Lemma). For a locally small category C, a hom-functor
C(a, ) : C → Set and any other functor Φ : C → Set, there is a one-to-one corre-
spondence between distinct natural transformations C(a, ) → Φ and distinct elements of
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3.2 Reasoning with Diagrams

Φ(a), the set that the object a is sent to by Φ.

Nat(C(a, ),Φ) ∼= Φ(a) = Set(1,Φa)

Proof. I will prove this by constructing a map between elements φ ∈ Φ(a) and natural
transformations η : C(a, ) → Φ and vice-versa. Then, I will show these maps are inverses
of each other, giving an isomorphism.

We begin by using an element φ : 1 → Φa to define a component for an arbitrary object
x, φ∗[x] : C(a, x) → Φx. This component is a function in Set, so can be defined using
a diagram indexing over all possible f : 1 → C(a, x) values (Figure 3.12, middle). The
simplest way that φ : 1 → Φa can interact with f : a → x is by pre-composition with
Φf : Φa → Φx (Figure 3.12, left). We equate the definition for φ∗[x] over all f with the
simplest way that φ and f can interact.

Figure 3.12: We wish to define a component φ∗[x] : C(a, x) → Φx. We do this by
taking its generating expression in the middle, and equating it to the simplest interaction
between f : a → x and φ : 1 → Φa on the left.

We see that λf gets moved from after to before the expression. This is exactly what a
natural transformation should do. To take advantage of this, we post-compose the left
side with a morphism Φg : Φx → Φy.

We recognize that the left-hand side corresponds to action with the φ∗[x] component,
and the right-hand side with the φ∗[y] component.

Next, we use the hom-rules to expand the right-hand side.

We recognize these as generating expressions in Set.
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3 Theory of Functor String Diagrams

Therefore, we see how the freedom of definitions in Set and the hom-rule conspire to
generate natural transformations C(a, ) → Φ using the elements of Φa.

Now, we need a corresponding map from natural transformations to elements of Φa. We
begin with a natural transformation η, and consider its definition over its set of inputs
C(a, x). As we are in Set, we begin with the generating definition.

Next, we employ the hom-rules.

And follow with naturality.

The highlighted section gives a morphism 1 → C(a, a), an element in Φ(a). Note how this
element is independent of the arbitrary x object. Therefore, it is associated to this natu-
ral transformation for all components. So, we have just used the Set (which allowed the
natural transformation component morphisms to be constructed), hom and naturality
rules to derive an element of Φ(a) for every natural transformation η : C(a, ) → Φ.

Finally, we are required to show the correspondence is one-to-one. We take an element
φ and use it to define a natural transformation. We then investigate the element cor-
responding to this natural transformation. Returning the original element makes the
process invertible in this direction.

Now, we investigate the a natural transform η∗, defined from the element associated to
the natural transform η. For this step, we follow the derivation of the associated element
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in reverse. We find that we get back to the original natural transform. Therefore, the
process is invertible in this direction as well.

Therefore, our map from elements to natural transformations is an isomorphism. This
finishes the proof of the Yoneda lemma using our graphical calculus.

3.2.5 Hom-functor wires as Reverse Basewires

The Yoneda lemma is so called because of its utility in proving other theorems. A
particular application is investigating the natural transformations between hom-functors.
The lemma states that Nat(C(a, ),Φ) ∼= Φ(a). So, if the target functor is Φ = C(b, )
then we have,

Nat(C(a, ), C(b, )) ∼= C(b, a)
Therefore, the natural transformations between the a and b hom-functor wires are the
morphisms b → a. The functor wire, therefore, are the morphisms of the basewires,
albeit reversed.

Starting with some g ∈ C(b, a), we will use the Yoneda lemma to find the corresponding
g∗ : C(a, ) → C(b, ) natural transformation. This gives us an expression that uses the
corresponding g : 1 → C(a, b) element of C(a, b).

The element g corresponds to a morphism, so we apply the hom-rule.

We can investigate this natural transformation by precomposing with the identity cup,
revealing how it corresponds to the original morphism.
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We see how the morphisms placed on hom-functor wires correspond to sliding morphisms
through the identity cup, reversing their direction. This is a graphical isotopy that is
intuitively shown through equivalently expressing all identity 1 → C(a, a) elements as
cups and hom-functor wires with arrows. Noting the significance of this correspondence,
we will diagram corresponding natural transformations without an asterisk.

3.3 The Product Extension

So far, I have introduced functor string diagrams, established key principles for devel-
oping new features, and shown how to reason with a family-expression-based graphical
calculus. I will now extend diagrams with products. Products give a framework for the
general description and construction of morphisms in a category. In addition, they allow
diagrams to be placed on top of each other, representing parallel expressions.

Previously (see Section 1.1), we identified that previous diagrammatic methods (Selinger,
2009) struggle to consider both the details of axes (the tensor approach) and independent
operations (the Cartesian approach). We have already carefully studied hom-functors,
which express the details of axes. Now, by developing the tools to graphically consider
products, functor string diagrams resolve this challenge, displaying both the details of
axes and independent, parallel operations.

Furthermore, Cartesian products and especially projections serve as the basis of broad-
casting. Broadcasting is critical to understanding deep learning, and in this section, I
develop the tools to formally consider it in the next (see Section 3.4).

Combining products with functor string diagrams was done by both prior works on
functor string diagrams. Marsden (2014) looked at products briefly, using colored sub-
diagrams in his preferred presentation. Nakahira (2023) looked at direct products. The
first work had an awkward time with bifunctors, which the latter improved upon. Neither
covered products in depth.

My approach builds on these works, and more clearly considers products in a unified
framework. Family expressions can readily show how families of morphisms are con-
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structed into a single morphism using products. Meanwhile, the principle of vertical
section decomposition and equivalent expression means my diagrams have a disciplined
approach to introducing new features, including products. This overcomes some of the
awkwardness of previous approaches.

Contributions

In this section, I develop the tools needed to integrate products with functor string
diagrams. Products are important because they are one of the few tools that can freely
construct morphisms in a category. The previous functor string diagram works briefly
looked at products. Here, I integrate Cartesian products with the family expression view,
using a “pseudomorphism” presentation that is reminiscent of linear algebra notation.
Then, I explore monoidal products and how traditional results relating copying, deletion,
and Cartesian monoidal products can be shown using functor string diagrams.

3.3.1 Projections

Products combine things in some way. Cartesian products are flexible, allowing anything
to be combined and subsequently deleted. In category theory, we can develop a general
definition of Cartesian projections. This integrates well with our previous exploration
of hom-functors and will allow us to define broadcasting clearly.

Definition 6 (Cartesian projections). For an object b, an I-family of projections from
b to a family of objects (Bi)i∈I is a family of morphisms (π[i]bBi)i∈I ∈ Proj(b);

• Which gives a complete description, for any object a and two morphisms fa
b

and gab , if for all i ∈ I, we have fa
b ;π[i]

b
Bi = gab ;π[i]

b
Bi, then fa

b = gab .

• Which accepts free construction (the Cartesian property), for any family
of morphisms (f [i]aBi) i∈I , there exists a morphism fa

b such that for all i ∈ I, we
have fa

b ;π
b
Bi = f [i]aBi.

From this definition, we see that a morphism to b is completely described, and therefore
defined, by its projections to (Bi)i∈I . Furthermore, any family of morphisms to the
projection objects (Bi)i∈I can be assembled into a morphism to b.

There is, therefore, a one-to-one correspondence between morphisms to b and morphisms
to the individual degrees of freedom offered by the projections. We can diagram this
correspondence by the diagram in Figure 3.13.

The right-hand expression in Figure 3.13 defines a morphism to b. We will, therefore,
want to use it in diagrams as an equivalent expression of a morphism to b. However,
we cannot unambiguously use these diagrams. The expression on the right could define
a different morphism to b depending on the family of projections we use. Furthermore,
the target object of the diagrams is not the same as the target object of the morphism
we are defining with it.
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Figure 3.13: A morphism to an object b with a collection of (Cartesian) projections Bi
can be expressed as a family of morphisms to Bi. I use “∼” to show a correspondence,
with the above expression stating there is a one-to-one correspondence between mor-
phisms f : a → b and families of morphisms (f [i]aBi) i∈I .

So, we introduce a pseudomorphism π∗[i]Bi
b that exists to clarify the set of projections we

are defining f over, and to make the family of diagrams align with the overall diagrams.
This is not a morphism. Instead, it is simply an equivalent expression that looks like
one. We introduce and diagram this feature in Figure 3.14.

Figure 3.14: Morphisms to objects b with a family of projections (Bi)i∈I are in one-to-one
correspondence with a family of morphisms to (Bi)i∈I . We diagram this correspondence
by a family expression and use pseudomorphisms to “contract” the family of morphisms
to (Bi)i∈I towards a morphism to b. This family expression accepts precomposition.

Note how every morphism f : a → b from an object a to an object b which has an I-family
of projections to (Bi)i∈I is in one-to-one correspondence with a family of morphisms
(f [i]aBi)i∈I . Therefore, the collection C(a, b) is in one-to-one correspondence with the
collection Πi∈I C(a,Bi). We can view the object b as being Πi∈IBi. Therefore, we can
write this correspondence as,

C(a, b) ∼= C(a,Πi∈IBi) ∼= Πi∈I C(a,Bi) (3.1)
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Figure 3.15: The projection π[k] : b → Bk extracts the k member of the family of
morphisms which construct f : x → b.

Furthermore, objects can also have families of coprojections. For an object a, an I-family
of coprojections (pAi

a )i∈I provides a complete description that accepts free construction.
So, if two morphisms from a are equal when pre-composed with each coprojection, the
two morphisms must be equal. Additionally, any family of morphisms (h[i]Ai

y )i∈I can be
assembled into a morphism hay. Similarly to Equation 3.1, we can view coprojections as
offering,

C(a, b) ∼= C(⨿i∈IAi, b) ∼= Πi∈I C(Ai, b) (3.2)

3.3.2 The Product of Categories

For any two categories C and D, there exists a product category C × D (Awodey, 2010,
p. 16). It has objects of the form (a, x), with a drawn from C and x from D. Similarly,
morphisms are of the form

(
fa
b , gxy

)
: (a, x) → (b, y), with fa

b from C and gxy from D.
Composition is done componentwise, so we have,

(fa
b , gxy ); (h

b
c, kyz ) = (fa

b ;h
b
c, gxy ; k

y
z ).

We then define two projection functors, πC×D
C and πC×D

D . They map objects (a, x) to a or
x, respectively, and similarly extract the elements of morphism tuples, sending

(
fa
b , gxy

)
to fa

b or gxy .

Every diagram is an expression in some category C (“expressions in a category” corre-
spond to morphisms). So, we can take the product of any two diagrams. This is done by
placing them above each other, and placing a double-dash line to show they are clearly
separated. We reserve a single-dashed line for products within a category, that will be
covered soon.

The principle of vertical section decomposition holds, every vertical section represents
either objects or morphisms in the product category. Furthermore, componentwise com-
position lets us decompose diagrams into horizontal sections. With the projection func-
tors, we can isolate horizontal sections from diagrams. Using both vertical and horizontal
section decomposition is shown in Figure 3.16.

On the right of Figure 3.16, notice how we have an expression in D and place something
above to get an overall expression in C ×D. The expression from C is a functor, moving
us into a new category while preserving the underlying composition. Therefore, the
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Figure 3.16: The product of two diagrams can be understood by decomposition into
composing vertical sections with matching wires or as two horizontal sections joined
together.

product of categories C × D can be seen as using expressions from C to define functors
on D. Objects in C behave like functors, and morphisms like natural transformations.
We can explicitly see this by substituting identities into the above diagrams, as seen in
Figure 3.17.

Figure 3.17: The morphisms involved in the product of categories behave like natural
transformations.

3.3.3 Bifunctors

Functors preserve composition. So, functors on products of categories maintain the
naturality of morphisms between the constituent categories. Functors on products of
categories are called bifunctors. Bifunctors from a category to itself, of the form · :
C × C → C, are of particular interest to us. For any two expressions fa

b and gxy in C, we
have an expression

(
fa
b , g

x
y

)
in C ×C. A bifunctor maps this back to the category, giving

us a vertically composed expression fa
b · gxy : a·x → b· y which is also in C.

Bifunctors, where this vertical composition behaves like morphism composition, are par-
ticularly powerful. This requires vertical composition to be associative,

(
fa
b · gxy

)
· hpq ∼=

fa
b ·

(
gxy · hpq

)
. Additionally, there has to be an identity, given by the identity of a unit
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object u, fa
b · Iduu ∼= fa

b
∼= Iduu · fa

b . These statements are isomorphisms, and they are
provided by isomorphisms between objects such as a · u and a. If a bifunctor’s ver-
tical composition behaves like morphism composition, it is called a monoidal product
(Awodey, 2010; Selinger, 2009).

Both Cartesian and tensor products are examples of monoidal products. Other con-
structs, such as joint distributions, are also monoidal products (Fritz et al., 2023). A
category equipped with a monoidal product is called a monoidal category. By developing
tools to deal with monoidal products, we can use functor string diagrams to consider a
variety of constructs.

A monoidal category (C,⊗, u) typically only has one monoidal product ⊗ with a unit
object u. They inherit a rich graphical scheme (Selinger, 2009). However, we have
already noted its limitations. Traditional monoidal graphical schemes have difficulty
representing both functors and monoidal products, which precludes them from expressing
both the details of axes (hom-functors) and the independent combination of morphisms
(products).

We could diagram monoidal products in a direct way, with a functor wire ⊗ sending an
expression C × C with a double dashed line to an expression in C. This requires us to
indicate that the ⊗ functor wire is dominant by thickening it, showing that it acts on
the entire expression rather than just the top segment.

Figure 3.18: The monoidal product ⊗ is a functor C × C → C. Here, we diagram an
expression involving it in three different ways. In pink, we note the object, and in light
blue the morphism. The direct ( , ) expression on the left is an equivalent expression to
a vertically stacked expression in the middle. In the middle, we thicken the ⊗ functor
wire to show that it applies over the entire block, not just the first segment. Finally, we
use a single dashed line on the right as an equivalent expression for monoidal products.

We develop an equivalent expression, diagramming monoidal products with a single
dashed line, which we show in Figure 3.18. As monoidal products are associative, we
do not need to indicate the order in which products are placed. Furthermore, we can
always introduce or remove a segment that only consists of the unit object. Typically,
we do not diagram unit object wires.
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Lastly, recall that placing a functor wire F over an object a or a morphism fa
b are

equivalent expressions for Fa or FfFa
Fb . We could diagram Ff ⊗ Gg directly, as on

the left of Figure 3.19, but using equivalent expressions for functors, we get the clearer
expression on the right.

Figure 3.19: Using equivalent ex-
pressions, we can show functor ex-
pressions in a clearer manner.

3.3.4 Cartesian Monoidal Product

A Cartesian monoidal product is the most direct inclusion of C × C into C. A Cartesian
monoidal product combines objects a and b into a product object a× b, and morphisms
fa
x and gby into f

a
x×gby : a×b → x×y. To exist, a category has to have an appropriate unit

object and products between any two objects. For the products to be Cartesian, they
must have projections which give complete descriptions and accept free construction.

The product of morphisms combine any morphisms in the natural way. Starting with
fa
x and gby, we generate πa×b

a ; fa
x and πa×b

b ; gby. These are morphisms from a × b to x

and y respectively, so we can freely construct them into a morphism fa
x × gby as x× y is

a product of x and y. They are diagrammed by placing morphisms above each other,
separated by a dashed line. This is shown in Figure 3.20.

Figure 3.20: In a Cartesian
monoidal category, we can take
the product of any two mor-
phisms.

Copying and Deletion

It is worthwhile to point out an alternative formulation of Cartesian monoidal prod-
ucts. Cartesian monoidal products are intimately tied to copying and deletion. This is
a valuable perspective, as it tells us why classical computing, which allows copying and
deletion, is necessarily Cartesian monoidal. Furthermore, it lets us know that perspec-
tives that do not allow copying and deletion – such as quantum or probabilistic systems
(Baez and Stay, 2010; Fritz et al., 2023) – must be thought of in a distinct way.

This is a standard result (Heunen and Vicary, 2012, p. 79). However, our approach is
somewhat different. We do not assume the bifunctor is symmetric. Defining symmetry
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is somewhat problematic (Selinger, 2009). It is better to first prove the product is
Cartesian so we can freely construct symmetry however we want. Alternatively, we
could assert that what remains after deletion gives a product. This is not particularly
useful. Products giving products is hardly insightful.

For some category C with a monoidal product × and unit object u, we begin with
asserting that the unit object u is a terminal object, meaning there is a unique morphism
delxu from every object to it. Therefore, any composition to u, such as fa

x ; del
x
u, must

equal delau. Hence, it deletes all incoming information. We diagram deletion as a wire
terminating in a black dot. Similar to generating objects, we do not diagram the unit
u. If the unit object is terminal, the monoidal product is semi-Cartesian.

We define the relationship between deletion and a copy map using the following defini-
tions. Then, we will prove this is sufficient for a × b to be the Cartesian product of a
and b.

Definition 7 (Cartesian monoidal category). A Cartesian monoidal category C has a
monoidal bifunctor × : C × C → C with a unit object u such that,

• (Monoidal product) It obeys monoidal regularity conditions. Vertical composi-
tion is associative and the unit object u can be freely introduced. The unit object
wires are not diagrammed.

• (Semi-Cartesian) The unit object is terminal, meaning there is only one mor-
phism, delau, from every object to it. It is diagrammed by a wire terminating in a
black dot.

• (Copying comonoid) For every object a, there is a copying map ∆ : a → a× a.
It is diagrammed by a black dot, followed by diverging wires. Together with the
deletion maps, it obeys the following properties.
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• (Duplicating property) For any morphism fa
b , the copy map duplicates it in the

following way,

Using just these conditions, we can prove that the objects a× b are products of a and b.
The proof can be found in the Appendix A.1.

Proposition 1 (The Residues of Deletion gives Projections). A Cartesian monoidal
category, as defined above, has Cartesian projections for any object a × b given by
π[a]a × b

a = Idaa × delbu and π[b]a × b
b = delau × Idbb.

3.4 Broadcasting

As we saw in Applications of Neural Circuit Diagrams, broadcasting is crucial to under-
standing deep learning models. Lifting a morphism f over an object a defines a new
morphism Baf that is a-fold parallelized. Hom-functors are an example of a broadcast,
lifting f : x → y to C(a, f) : C(a, x) → C(y, x). However, inner broadcasting is not
perfectly analogous to hom-functors without a fair deal of additional definitions.

Besides, the deep learning community needs a general definition of broadcasting. Broad-
casting is critical but rarely precise. The PyTorch broadcasting syntax is very finicky.
It inherits from NumPy, another extremely common package, so is hardly exceptional
in its treatment. Other works aiming to improve how we communicate deep learning
models, such as Chiang et al. (2023), had to introduce bespoke definitions.

Instead of relying completely on hom-functors, we will contribute a general definition
of broadcasting. Our definition allows morphisms to be lifted over complex data types
while having clear behavior. Furthermore, it integrates well with diagrams and code
implementations.

Contributions

In this section, I contribute a general definition of broadcasting, which is needed in
the deep learning community. Additionally, I contribute the specifications for an index
category, a minimal category to handle broadcasting. I prove that a few basic require-
ments imply the existence of indexes and hom-functors that stay within the category.
Furthermore, I prove that a broadcasted morphism is equal for any choice of family of
indexes. Then, I set up the framework for monoidal index categories, which incorporate
index categories with monoidal products. This section defines and formalizes broadcast-

62

https://pytorch.org/docs/stable/notes/broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html


3.4 Broadcasting

ing, providing the framework for broadcasting to be used in neural circuit diagrams and
other systems.

3.4.1 A General Definition of Broadcasting

Definition 8 (General Broadcasting). Given a morphism f : a → b, an I-fold family of
morphisms (µ[i]Aa )i∈I from A to a, an I-fold family of projections (π[i]Bb )i∈I from B to
b, we define the broadcasted morphism Bf : A → B by,

BfA
B ;π[i]Bb = µ[i]Aa ;f

a
b

This definition can be given by the diagram family expression,

We can also define Bf : A → B as a contraction over the family of projections (π[i]Bb )i∈I ,

In our general definition, broadcasting a morphism f : a → b requires identifying a
family of morphisms to a and a family of projections to b of equal size. This yields a
lifted morphism Bf : A → B. This lifted morphism is defined for each of I projections
from B to b and is, therefore, a uniquely defined morphism.

3.4.2 Broadcasting and Indexes

We see that broadcasting is dependent on the families of projections we choose. We
want these families of projections to align with how we broadcast using diagrams. So,
we will begin by diagramming how we “want” broadcasting to work, and will then work
to formalize it by choosing appropriate families of morphisms and projections. The
desired shapes of broadcasted morphisms are shown in Figure 3.21.
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Figure 3.21: Different cases of broadcasting. We show how we want broadcasting to
influence the shape of morphisms in each case.

Figure 3.21 shows, on the left, how the simplest form of broadcasting aligns with hom-
functors. However, inner broadcasting does not align with functors. Furthermore, on the
right, we see that even simple broadcasts do not align with hom-functors. The diagram
on the right shows a case where we broadcast over the first segment and leave the other
alone. This is not a direct application of a hom-functor, which would yield a morphism
C(a, x× y) → C(a, z ×w). Rather, we must separate f , generate C(a, f), and recombine
the morphisms.

Our general definition of broadcasting can cover all these cases. To lift a morphism, we
must identify an appropriate family of morphisms for the source and target objects. The
appropriate family is indicated by how we diagram. We show the choice of appropriate
projections in Figure 3.22, which aligns with how we defined broadcasting in Figure 2.8.

Figure 3.22: The ap-
propriate projections
to clearly define
broadcasting in each
case.

The existence of these index morphisms, however, requires further infrastructure. We
want to relate the indexes on C(a, x) to the object a. Furthermore, we want to know
the conditions under which broadcasting is possible. Doing this, we can produce a
more general and powerful framework for analyzing deep learning models. It will put
broadcasting on a solid mathematical foundation that can be reliably extended to new
circumstances.
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3.4.3 Index Categories

Definition 9 (Index Category). An index category C has,

• (Coprojection rule) A generating object g, such that for every object a, there is
a family of coprojections from g.

– We diagram these coprojections as bras, ⟨ |, or pointed pentagons. Iterating
over i ∈ Ia, an object a has a family of coprojections given by ⟨ia| : g → a.
The dual morphism used for C (⟨ia|, ) : C(a, ) → C(g, ) is diagrammed by a
ket, |ia⟩ . The associated pseudomorphisms are diagrammed by kets with an
internal asterisk, |i∗a⟩;

– Every morphism φ : g → a is in some family of coprojections for a;

– Every morphism, therefore, has a coprojection expansion;

• (Representation rule) The hom-collections C(a, b) are objects in C. We have
isomorphisms C(g, a) ∼= a.

– Therefore, there is a one-to-one correspondence between C(a, b) and C(g, C(a, b)).
So, every morphism f : a → b has a corresponding morphism f : g → C(a, b).
We can show this by (using ∼ for corresponding expressions);

• (Index interaction rule) For any morphism ⟨ia| : g → a, we have indexes
|ia⟩xxx = C (⟨ia|, x) : C(a, x) → C(g, x), which interact with morphism representa-
tions in the following way;

In Set, coprojections are given by the elements of a set. Any map between elements from
the domain to codomain set can be constructed. In Vect, there is an underlying field
(a space with addition, multiplication, and division) such as R, and we can construct all
vectors as maps R → Rn, and linear maps λ : Rn → Rm as matrices Rn×m. Later on, if
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we want to work with a subcategory of Set, we know which properties must remain for
broadcasting to be well-defined.

Our index category is intentionally minimal. We only define hom-objects and assert there
is a correspondence between expressions C(a, b) and C(g, C(a, b)). The lifted coprojections
are defined as interacting with these correspondences in a specific way according to the
index interaction rule. These definitions are clearly satisfied in Set. For a space where
all operations are linear, a coprojection family is a vector basis. These definitions are
sufficient for broadcasting to exist in a category.

We require the following proposition related to index categories to construct the indexes
for Figure 3.22. This proof can be found in Appendix A.2.

Proposition 2 (Indexes as Projections). In an index category C, where:

• An object a has an I-family of coprojections (⟨ia|) i∈I ,

Then indexes (|ia⟩xxx) i∈I forms a family of projections for C(a, x). We can diagram this
as:

3.4.4 Broadcasting and the Hom-Functor

We defined index categories with only three principal properties: coprojections, rep-
resentation, and index interaction. From just these, I derived that indexes serve as
projections using the graphical calculus I previously introduced. This definition is min-
imal. Our index category does not have explicitly defined hom-functors, nevermind the
tools for a generic lambda calculus. However, I will soon prove an internal hom-functor
necessarily exists and that we have all the tools for inner and outer broadcasting.

There are various advantages to this minimal description. It means we can easily check
whether a new construct is an index category without needing to resort to Set. The rules
can be implemented in an imperative, sequential manner, which is easier to conceptualize
than functional expressions that require a lambda calculus.

First, we need to define outer broadcasting. Broadcasting a morphism f : x → y
requires an I-family of morphisms

(
µ[i]Xx

)
i∈I and projections

(
π[i]Yy

)
i∈I to define BIf

X
Y

(see Section 3.4.1). For outer broadcasting, we choose an object a and an Ia-family of
coprojections (⟨ia|) i∈Ia to lift f as follows;
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Definition 10 (Outer Broadcasting). In an index category C, with an Ia-family of
coprojections (⟨ia|)i∈Ia, we have an Ia-family of morphisms (|ia⟩xxx)i∈Ia to x, and an
Ia-family of projections

(
|ia⟩yyy

)
i∈Ia

to y. We define an a-fold outer broadcasting of a

morphism f : x → y using (⟨ia|)i∈Ia by,

I indicate that f was broadcasted over the ⟨ia|-family of coprojections. The right-hand
side are projections, meaning the highlighted morphism f⟨ia| : C(a, x) → C(a, y) is defined
for all its degrees of freedom.

However, we come to an important realisation, which is that the choice of indexes we
use to define broadcasting does not affect the morphism. This can be found in Appendix
A.3.

Proposition 3 (Outer Broadcasting as the Internal Hom-Functor). An a-fold outer
broadcast of a morphism f : x → y is equal for all choice of families of coprojections.
For any two families of coprojections (⟨ia|)i∈Ia and

(
⟨i′a|

)
i∈Ia, we have,

This means we can diagram an a-fold outer broadcast of a morphism f : x → y without
reference to a family of coprojections. Furthermore, this expression behaves like the
hom-functored C(a, f) : C(a, x) → C(a, y), but internal to C without exiting to Set.

This means we can diagram an a-fold outer broadcast of a morphism f : x → y without
reference to a family of coprojections.

This means that any morphism g → a which is a coprojection in any family also satisfies
the broadcast rule. In the definition of index categories, we asserted that each morphism
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φ : g → a is a morphism in some family of coprojections to a. Therefore, the broadcast
rule generally holds.

The above proposition implies any morphism g → a, which is a coprojection in any
family, also satisfies the broadcast rule. Previously, we asserted that each morphism
⟨φ| : g → a is a morphism in some family. Therefore, the broadcast rule generally holds.

Note that in Vect the morphism ⟨0| : R1 → Rn is not in a family of coprojections,
meaning it is not a “true” index category. However, the below statement still holds for
⟨0|, as multiplying linear operations by zero before or after is the same.

This allows any morphism to be considered naturally on the hom-functor line, even
though we have not defined hom-functors. This requires us to provide a quick defini-
tion of the natural correspondence of morphisms. I prove these are, in fact, natural
transformations, and are equal for any choice of family of indexes in Appendix A.4.

Definition 11 (Corresponding Natural Transformation). For every morphism ρ : a → b
and object x, there is a “corresponding natural transformation” C(ρ, x) : C(b, x) → C(a, x)
defined over the indexes in the following way;

Proposition 4 (Corresponding Natural Transformations). Corresponding natural trans-
formations C(ρ, x) : C(b, x) → C(a, x) are independent of the choice of family of indexes
used to define them, and are indeed natural transformations. This implies that;

We can equivalently express these using hexagons, to distinguish their naturality.

Therefore, we see that only using our three key index category properties we were able
to derive the hom-functor properties. This has many advantages. The conditions I laid
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out are minimal, meaning we can see how they extend to new domains. They hold for
both Set, the category of sets and any function between them, and Vect, the category
of exclusively linear operations (with very slight modifications).

Furthermore, unlike in Reasoning with Diagrams, we do not have to move into Set, nor
did we have to assume the existence of hom-functors and an internal lambda calculus.
Rather, hom-functors are derived from these minimal conditions. All operations can
be interrogated by a combination of coprojections and indexes, meaning expressions in
index categories can be readily decomposed.

When developing and studying machine learning models, broadcasting is often critical.
By contributing a general definition of broadcasting and laying out the minimal con-
ditions for a broadcast category, I lay the foundation for more sophisticated models of
machine learning systems to be developed, confident that a tool as critical as broadcast-
ing is well-defined.

3.4.5 Broadcasting and Products

Previously, we approached products in a general manner. Monoidal products offer the
framework to simultaneously consider Cartesian products, tensor products, joint prob-
abilities, among other constructs. For inner broadcasting, we will define broadcasting
with respect to any monoidal product. Being monoidal is necessary for products to be
graphically unambiguous, as they let us ignore associativity. Here, we require the unit
object to be the generating object.

Definition 12 (Monoidal Index Category). A monoidal index category C is an index
category in addition to having,

• (Monoidal product) A monoidal product ⊗ with the generating object g as a unit.
For a family of coprojections (⟨ia|)i∈I for an object a and a family of coprojections
(⟨jb|)j∈J for an object b, we have a family of coprojections (⟨ia⊗jb|)i,j∈I,J for a⊗b;

• (Product representation rule) There is a correspondence between expressions
C(x⊗ y, z) ∼= C(y, C(x, z)). We diagram this as,
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• (Product index interaction rule) Coprojections ⟨ix| generate indexes |ix⟩zzz
that interact with morphism representations in the following way,

Similarly to the above, we define inner broadcasting in the following manner. By inter-
rogating over the coprojections, we can prove that this expression is also independent of
the choice of family of indexes. This is attached in Appendix A.5.

Definition 13 (Inner Broadcasting). In a monoidal index category, we lift a morphism
f : x ⊗ y → z to Baf : C(a, x) ⊗ y → C(a, z) using a family of coprojections (⟨ia|)i∈Ia
which derive indexes that broadcast f according to;

Proposition 5 (Inner Broadcasting). Inner broadcasted morphisms over a are equal for
all choices of families of coprojections.

This broadcasting is well-defined; we have an I-family of morphisms on C(a, x)⊗ y and
an I-family of projections on C(a, z). The morphisms on C(a, x)⊗ y are not projections,
meaning that our general definition of broadcasting is required. The general definition of
inner broadcasting I present can be constructed in any monoidal index category, offering
a flexible framework that can be extended to new situations.

3.5 From Theory to Application: A Robust Basis for Neu-
ral Circuit Diagrams

In Applications of Neural Circuit Diagrams, we looked at neural circuit diagrams as an
applied framework to overcome a lingering challenge in deep learning research. Then,
we investigated functor string diagrams, developing a graphical calculus based on family
expressions to extend them to new situations. This allowed us to derive properties
related to broadcasting and to specify an index category.

We now focus on using functor string diagrams to provide a robust basis for neural
circuit diagrams. Neural circuit diagrams are an equivalent expression for a particular
specification of a monoidal index category. By establishing this framework, I contribute
a significant improvement over current category theory-based approaches to modeling
deep neural networks, which can only represent the most basic models with the category
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NNet (Fong et al., 2019), or rudimentary Cartesian graphical models (Cruttwell et al.,
2021; Shiebler et al., 2021). Recall that Piedeleu and Zanasi (2023) noted that current
category theory-based models for deep learning networks are mere “starting points”.

This robust foundation opens up future work that can integrate neural circuit diagrams
into the existing research on deep learning and category theory, including automatic
differentiation (Fong et al., 2019; Cruttwell et al., 2021) and analyzing the mechanics
of information (Perrone, 2022). Furthermore, this foundation motivates the application
of category theory tools to models as they appear in practice. The approach I take is
carefully specified. Extending it to new situations will involve refining these specifications
or building additional tools on top of them. The significance of this section, therefore,
is in providing the foundation for a rigorous analysis of deep learning architectures.

Contributions

In this section, I take the theoretical tools I have developed and use them to contribute
a rigorous foundation for neural circuit diagrams and, hence, deep learning models more
generally. I show how neural circuit diagrams are an equivalent expression for a subcat-
egory of a Cartesian index category where all objects are sets of functions to R. This
mathematical model for deep learning architectures contributes a basis for future anal-
ysis that, unlike current models, represents models exactly as they appear in practice
(Fong et al., 2019; Cruttwell et al., 2021; Shiebler et al., 2021).

Then, I explore how natural transformations can be represented in neural circuit dia-
grams and identify how they give us a unique perspective on algorithms. I use these
tools to reason about multi-head Attention. I show how the idea of splitting and joining
parallel heads can be conceptually presented with a diagram and how this diagram can
be used to derive an implementation. Overall, this section reconciles neural circuit di-
agrams with robust theory and uses this theory to identify how categorical constructs,
such as natural transformations, can be used to understand and implement algorithms.

3.5.1 Set as a Cartesian Index Category

Definition 14 (Cartesian Index Category). A Cartesian index category C is all of;

• (Monoidal) Has a monoidal product × with unit object u such that it is,

• (Cartesian monoidal) It is semi-Cartesian, with a terminal unit object that
every object has only one morphism delau towards, has a copying comonoid for
every object ∆ : x → x × x that interacts with deletion in the standard way, and
copying obeys the duplicating property.

• (An index category) The unit object u is a generating objects from which every
object x has a family of coprojections (⟨ix|)i∈Ix, families of coprojections (⟨ix|)i∈Ix
for x and (⟨jy|)j∈Jy for y gives a family of coprojections (⟨ix| ⊗ ⟨jy|)j∈Jy for x⊗ y,
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we have access to C(a, x) objects which obey the product representation rule, and
the index interaction rule holds.

A Cartesian index category encompasses Set. In Set, a monoidal Cartesian product ×
exists. Furthermore, the coprojections for a function f : X → Z are the elements of X,
x : 1 → X. The elements of X × Y are (x, y) : 1 → X × Y , which are constituted of an
element from x : 1 → X and y : 1 → Y . Representations exist as sets of functions exist
within Set. Therefore, we see that Set is a Cartesian index category.

We could represent Set using functor string diagrams. In Figure 3.23, we are able
to communicate complex dynamics of various data types broadcast and interacting in
different ways. We see that functor string diagrams are a natural way to extend neural
circuit diagrams to arbitrary data types.

Figure 3.23: Here is an expression using functor string diagrams in a monoidal index
category. As Set is a Cartesian index category, we could view the objects as sets, with
hom-functor lines giving sets of functions such as Set(a× b, x).

Starting with a Cartesian index category C, we move into a subcategory. A subcategory
may not be a Cartesian index category, rather, it is a category, closed under composition,
drawn from one. This lets us keep any expression in the original category, as long as
it is built from objects and morphisms contained in the subcategory. The subcategory
therefore keeps many agreeable properties, without requiring strict specifications.

3.5.2 The Set( ,R) Subcategory

We consider the subcategory Set( ,R). This subcategory has objects Set(s,R), where
s is any set. The unit object 1 is derived from Set(∅,R), which we can also write
Set(0,R). This means all objects in the subcategory have R as their underlying object,
or are 1. Morphisms between objects Ra (or Set(a,R)) and Rb in this subcategory are
the functions between the sets represented by the objects Ra and Rb.

As the underlying object in this subcategory are always the same, we do not need to
diagram it. Instead, we introduce an equivalent expression where we only draw the hom-
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Figure 3.24: Here, all objects have R as their underlying object. This means the above
expression, and all its constituent morphisms, are in the subcategory Set( ,R).

functor wires, and do not drawn arrows. To diagram the object 1, we draw a 0 wire,
which gives R0. This gives diagrams that begin to approach neural circuit diagrams.

Figure 3.25: The expression in Set( ,R) from Figure 3.24 can be diagrammed using an
equivalent expression where we do not draw the underlying R object, keeping only the
hom-functor wires. In this case, we do not draw arrows.

Next, we need to clearly define broadcasting on lines that are not on the lowest level.
This is done by applying a transpose before and after a function. I show the transpose
in Figure 3.26, and show lower broadcasting in Figure 3.27.

Figure 3.26: The transpose is an operation that swaps indexes. It can be used to define
lower broadcasting.
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Figure 3.27: Often, in neural circuit diagrams we have wires pass below operations. This
can be defined with a family of morphisms and projections, or by using two transpose
operations.

3.5.3 Natural Transformation Components in Neural Circuit Diagrams

Indexes are akin to natural transformations applied onto functor wires, rather than
functions on underlying objects. Operations ρ : a → b yield natural transformations
Set(ρ, ) :Set(b, ) → Set(a, ) (see Proposition 4, or Subsection 3.2.5). We can diagram
this as,

Applied onto an object Set(s,R) in our subcategory, we get a component;

Therefore, we see that neural circuit diagrams can express natural transformations be-
tween hom-wires by showing their components.

Functions derived from the components of natural transformations between hom-functor
wires have special properties. They are computationally inexpensive and are natural with
respect to functions on other wires. In a full functor string diagram expression, we can
clearly see which functions are natural transformations and which are not.

If we want to maintain this information in neural circuit diagrams, we could diagram
functions that are the components of some natural transformation between hom-functor
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wires using hexagons or maintain the arrows on wires. We do not always need to indicate
a function is a natural transformation component. However, it can, at times, lead to
elegant graphical intuition for rearranging expressions.

Indexes are derived from coprojections ⟨ia| : 1 → a which yield natural transformations
Set (⟨ia|, ) : Set(a, ) → Set(1, ), and I diagram them with pointed pentagons. Trans-
poses are a natural transform derived from the flip operation on tuples, and diagramming
them like we do in Figure 3.26 shows the path that indexes follow.

Any operation defined solely from indexes is a natural transformation, and benefits from
naturality and inexpensive evaluation. Natural transformations can also be derived from
functions between index sets. This includes a host of operations, from diagonalization,
which is the natural transform corresponding to copying, and convolution, which is the
natural transform corresponding to addition, if we take addition on n and m to be the
addition between {0, . . . , n− 1} ⊂ N and {0, . . . ,m− 1} ⊂ N, which gives + : n×m →
(n+m− 1).

Neural circuit diagrams are uniquely positioned to identify natural transformations and
to accommodate their unique properties. Natural transformations obey their own alge-
bra. For instance, diagonalization duplicates natural transforms that come after it, as it
is derived from copying. Natural transformations are also compatible with broadcasting,
letting us place the axis with the lowest cardinality over the function we are broadcast-
ing. This, and other manipulations, are revealed by neural circuit diagrams, granting us
opportunities to understand existing algorithms, and to innovate new ones.

3.5.4 Dominant Axes

Previously, we briefly covered a case where we needed a “dominant” functor wire (see
Figure 3.18). This was needed because we wanted to express F (f × g), rather than
Ff × g. Dominant functor wires are useful in index category expressions, where functor
wires are hom-functors wires. Dominant functor wires let us express the relationship
between Ra×(b+c) as opposed to Ra×b+a×c, which have a one-to-one correspondence of
indexes but behave differently when broadcasting.

This correspondence is implemented by a distributor map, which is defined with respect
to deletion in the following way. Observe that when a dominant functor wire is acting
over only one object, it becomes a regular functor wire.

Definition 15 (Distributor). For a Cartesian monoidal category which is closed (the
hom-objects C(a, x) are contained in the category), for objects a, x and y, the distributor
is a morphism ∇a,xy : C(a, x)×C(a, y) → C(a, x×y). We define it over the two projections
of C(a, x)× C(a, y), which are the residue of deletion;
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As this morphism is constructed from identities and deletion, it always exists in a closed
Cartesian monoidal category. The reverse distributor is defined in the following way;

Significantly, the distributor is a natural transformation over independent morphisms,
such as C(a, f)× C(a, g). Proof can be found in the appendix; see Appendix A.6.

Proposition 6 (Naturality of the Distributor). The distributor ∇a, ∗ : C(a, )×C(a, ∗) →
C(a, ×∗) acts like a natural transformation on independent morphisms, C(a, f)×C(a, g).
This means the distributor is a natural transformation ∇a : C(a, )×C(a, ) → C(a, × ),
which are functors of the form C × C → C.

The distributor obeys another significant property that lets it give insight into how
algorithms are structured. With respect to the natural transform associated to the copy
map, the following proposition holds. I prove this in Appendix A.7.

Proposition 7 (The Distributor and Diagonalization). The distributor ∇a, ∗ : C(a, )×
C(a, ∗) → C(a, ×∗) and the natural transformation associated to the copy map, C(∆, ) :
C(a× a, ) → C(a, ), are related in the following way;

We can also draw this expression as;
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This has critical applications. As diagonalization, the natural transform of the copy
map, is a natural transform, we can slide it along expressions. Whenever we have a
tuple of independent operations, the distributor is also natural, meaning we can slide
it along. These facts let us rearrange algorithms, easily adding additional features that
take advantage of parallelization. Then, using the naturality of the distributor and
diagonalization to find an implementation.

3.5.5 Natural Transformations and Multi-Head Attention

An example of applying these facts are with multi-head attention. Multi-head attention
broadcasts scaled dot-product attention over an additional h-length axis (see Section
2.3.2). This efficiently uses parameters and is essential to the effectiveness of transformer
architectures (Vaswani et al., 2017; Lin et al., 2021). However, it is not obvious how to
implement or diagram the splitting and recombination of parallel heads. As I describe
in Section 1.2, the typical presentation of splitting and concatenating these heads is
difficult to understand.

Using neural circuit diagrams, we can first reason that splitting and joining attention
heads should have an overall structure that looks something like the following;

This has scaled dot-product attention act in parallel, as we have an additional h-axis for
each linear projection. These are joined, and scaled dot-product attention broadcast over
it. However, it is not obvious how we would go about implementing such an operation.
An imperative loop is one option but it fails to take advantage of the parallelization
benefits of linear operations and graphical processing units.

To find an implementation, we use an insight from category theory. We isolate the
middle section. Within this section, the h-axis is purely natural; all operations on it are
natural transformations. Natural transformations exist within expressions as component
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functions, meaning they accompany vertical and horizontal section decompositions. I
have highlighted the purely natural axes within the middle section in purple.

Then, we can interrogate this with a generic index over the h-axis. Using broadcasting
and naturality rules, we can expand this expression, moving the indexes to the front.
Here, we use an insight from the previous section. For index categories, the behaviour
of hom-functors and natural transformations between them are completely derived from
and hence encompassed by indexes and the broadcast rules.

Recognize that the left-hand side can be extended over a family of indexes. Therefore,
the expression on the right-hand side defines it. Importantly, this implies that any other
assembly of functions and natural transformations that reduces to the right-hand side is
equivalent to the left-hand side.

This guides us toward a step-by-step implementation. This expression is equal to the
expression is equal to the above over indexes, which form a family of projections, meaning
the expressions are equivalent.
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This rearrangement can be clearly implemented using efficient linear operations. Over-
all, this case study of natural transformations and multi-head attention show why the
categorical structure of neural circuit diagrams offers unique insight. Firstly, we saw that
multi-head attention, though conceptually difficult, can be clearly shown using neural
circuit diagrams. However, this expression did not have a clear implementation. Then,
I used naturality and a generic index to show that any assembly of natural transforma-
tions that yields the same relationship between initial and final indexes is equivalent.
This was used to derive the implementation of multi-head attention from Figure 2.19.

3.6 Conclusion

Functor string diagrams are a powerful graphical language that can robustly com-
municate compositional structures. Compared to standard monoidal string diagrams
(Selinger, 2009), functor string diagrams can readily show functors and natural trans-
formations, structure preserving maps. For deep learning, this allows the details of axes
to be simultaneously communicated with independent products. This is a novel field,
with only two works having extensively studied this approach to diagrammatic category
theory (Marsden, 2014; Nakahira, 2023).

In this chapter, I contributed an alternative approach to functor string diagrams that
focuses on vertical section decomposition and equivalent expressions to efficiently scale
diagrams to new situations. This contrasts with the previous approaches, which focus
on colored regions that express which category we are working with and how we move
between them. I feel this approach prevents diagrams from focusing on composition and
graphical intuition. I show that my framework is able to prove the Yoneda lemma, as
well as provide a rigorous foundation for broadcasting with indexes and neural circuit
diagrams.

This rigorous foundation for broadcasting and neural circuit diagrams provides a math-
ematically explicit model of deep learning architectures as they are used in practice.
This contrasts to the limited frameworks currently used (Shiebler et al., 2021; Cruttwell
et al., 2021; Fong et al., 2019; Saxe et al., 2019). This opens up exciting avenues for
future research, which will allow us to consider the theory of deep learning architectures
in a manner that is relevant to applied models.
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Chapter 4

Concluding Remarks

4.1 Future Work

The most exciting aspect of this thesis are the many avenues for future research it opens.
Neural circuit diagrams can, of course, be used to diagram algorithms not covered in
this paper. Complex models like the text-to-image diffusion architectures (Ho et al.,
2020; Nichol and Dhariwal, 2021) would particularly benefit from such investigations.
However, there are three approaches which go deeper that I believe would be immensely
beneficial to the deep learning community, and address aspects overlooked in this thesis.

4.1.1 Implementations

The relationship between diagrams and implementation can be further developed. I have
already shown that there is a close correspondence between diagrams and code. However,
as diagrams are an explicit set of instructions it is possible to use them as code. Like any
high-level programming language, the details of components are hidden. Interestingly,
neural circuit diagrams are a high-level language with very explicit memory management.
Diagrams can serve as a platform-agnostic visual programming language which can then
be integrated into existing packages such as PyTorch or TensorFlow. Creating tools to
automatically move between code and diagrams, or diagrams and code, is an exciting
route for future research.

Furthermore, algorithms defined using neural circuit diagrams have the potential to be
rearranged and have their performance improved using some of the tricks I have de-
veloped. For instance, linear operations can be reorganized to accelerate computation,
or natural transforms can be rearranged to avoid calculations. Given that the possible
rearrangements of linear operations and natural transformations changes under composi-
tion, an automated system may be able to find cases where (A;B) is cheaper to evaluate
than A followed by B. This may yield similar results and perhaps even subsume ap-
proaches such as Xu et al. (2023), where a graph tensor network perspective was used
to reinterpret, rearrange, and improve various algorithms’ performance.
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4 Concluding Remarks

4.1.2 Mathematics All the Way Down

In their survey, Shiebler et al. (2021) covers the main category theory perspectives on
machine learning. They cover the parametric gradient-based learning perspective, which
allows models to consider the accumulation of hidden parameters as a type of compo-
sition and to automatically produce associated learning algorithms that improve these
parameters (Fong et al., 2019; Cruttwell et al., 2021). Additionally, the survey cov-
ers Markov categories which allow statistical characteristics of models to be graphically
analyzed (Fritz and Rischel, 2020).

However, in the discussion, they note these approaches are disjoint and in need of uni-
fication. I believe functor string diagrams would allow these concepts to be understood
in a graphically intuitive manner and then reconciled with neural circuit diagrams. By
reconciling parametric-based and probabilistic-based neural circuit diagrams, we could
specify when both perspectives are available to us. However, this would require a careful
treatment of measure theory to ensure the functions generated by diagrams are proba-
bilistically meaningful.

If successful, such an investigation would have many benefits. It would mean neural cir-
cuit diagrams more accurately represent models by considering compositional properties
related to hidden parameters and internal randomness. It would allow deep learning
models to be clearly understood as probabilistic learning mechanisms, randomly sug-
gesting improvements on hidden parameters. They would be mathematically explicit all
the way down, opening up robust analysis of training, convergence, and generalization
in a rigorous measure theory manner.

Results drawn from such an analysis would be applicable to any model that can be
represented by a neural circuit diagram. This is, of course, an immense scope, and
would be in significant contrast to much of the existing theoretical work, which often
derive specialized results about specialized toy models.

4.1.3 The Mechanics of Information

Neural circuit diagrams and Markov categories offer an exciting opportunity to analyze
the mechanics of information throughout a model. Information theory is at the inter-
section of mechanics and statistics, assigning quantitative values to concepts such as
certainty or relatedness. These values can be empirically studied, as was done by Saxe
et al. (2019) to disprove old hypotheses about deep learning models (Tishby et al., 2000).
Information theory offers a rigorous and empirically testable means of developing theory
and intuition about models.

This promises a significant improvement over works such as He et al. (2016) which
resort to vague and ultimately untestable theories about why certain features benefit
architectures. Effectively, the only tool He et al. (2016) had available to analyze models
in general was differentiation. Differentiation is one of the few operations with well-
known compositional behavior and which can be used to analyze models in general.
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4.2 Conclusion

However, a graphical category theory approach opens up additional compositional tools.
A particularly promising approach is by Perrone (2022), who uses Markov categories to
graphically analyze information theory concepts such as entropy and divergence. These
concepts form the basis of most loss functions. Therefore, understanding their mechanics
will allow model performance to be better understood.

Combining neural circuit diagrams with a probabilistic perspective will open up these
tools. This would allow the minimum theoretical increase in the loss function from
certain design choices to be assessed. By providing the means to graphically assess both
the performance and computational complexity impacts of design choices, neural circuit
diagrams could become essential to the model design process.

4.2 Conclusion

In this thesis, I identified an open problem in deep learning research and presented a
solution with practical applications and robust underlying theory. In The Problem and
the Solution, I identified that deep learning research suffers from imprecise models of
architectures, and that category theory is a promising approach to take.

Moving onto the Applications of Neural Circuit Diagrams, I presented neural circuit
diagrams as a robust diagramming scheme that, for the first time, lets models be sys-
tematically visually communicated and analyzed. I showed many practical applications
of this framework, proving it can communicate contemporary architectures and elucidate
opportunities for innovation more clearly than existing methods.

Finally, I developed the Theory of Functor String Diagrams. I extended a nascent
graphical approach to category theory from Marsden (2014) and Nakahira (2023) into
something that provides a flexible graphical calculus and that offers a robust foundation
for neural circuit diagrams. The principled approach I present emphasizes the composi-
tional character of diagrams.

These techniques worked extraordinarily well. A host of architectures can be clearly
communicated by neural circuit diagrams, all the while having close correspondence
to code and necessarily offering an explicit mathematical expression. Functor string
diagrams proved to be a powerful way of approaching category theory, with mechanisms
to present functors, naturality, family expressions, products, and other constructs.

This success, I believe, comes back to the nature of the problem we are dealing with.
The nature of a problem hints at the relevant mathematics. Particle physics studies
symmetry; hence group theory has remarkable applications. The same goes for deep
learning architectures and category theory. They are highly composed systems with a
compositional structure needing to be interpreted at multiple levels of analysis. Cate-
gory theory studies composition and how it is preserved across perspectives, meaning it
forms a natural foundation for a robust conceptualization of deep learning architectures,
bridging the gap between theory and application.
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Appendix A

Appendix: Accompanying Proofs

1 The Residues of Deletion gives Projections

Proposition 1 (The Residues of Deletion gives Projections). A Cartesian monoidal
category, as defined above, has Cartesian projections for any object a × b given by
π[a]a × b

a = Idaa × delbu and π[b]a × b
b = delau × Idbb.

The projections are, therefore, the following morphisms;

Proof. First, we prove the free construction property. This would require that any pair
of morphisms f [a]xa and f [b]xb can be constructed into a morphism fx

a×b such that,

We can do this using the copy map. Observe that,
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A Appendix: Accompanying Proofs

Therefore, using the semi-Cartesian properties, we can show that a × b accepts free
construction.

Next, we prove the complete description property. This relies on the copy map’s du-
plicating property. This requires showing that if fx

a×b;π[a]
a×b
a = gxa×b;π[a]

a×b
a and

fx
a×b;π[b]

a×b
b = gxa×b;π[b]

a×b
b , then fx

a×b = gxa×b.

In other words, fx
a×b;π[a]

a×b
a and fx

a×b;π[b]
a×b
b are sufficient to uniquely identify fx

a×b.

Therefore, we start with fx
a×b;π[a]

a×b
a and fx

a×b;π[b]
a×b
b , and attempt to reconstruct fx

a×b.

We see that the existence of a duplicating copy map implies a one-to-one correspondence
between pairs of morphisms (f [a]xa, f [b]

x
b ) and morphisms fx

a×b. Therefore, a × b is a
Cartesian product of a and b.

2 Indexes as Projections

Proposition 2 (Indexes as Projections). In an index category C, where:

• An object a has an I-family of coprojections (⟨ia|) i∈I ,

Then indexes (|ia⟩xxx) i∈I forms a family of projections for C(a, x). We can diagram this
as:

Proof. First, the complete description property. Assume for two morphisms fax and hax,
the following are equal for all indexes,
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Therefore, as (⟨ia|) i∈I gives a family of coprojections, f must equal g. So, (|ia⟩xxx) i∈I
gives a complete description of morphisms g → C(a, b). For morphisms F,H : c →
C(a, b), we expand over the coprojections of c.

We use the complete description property we just derived to contract this expression
over the ia indexes of I.

This final derivation means we have proved that our initial expression gives a complete
description.

For free construction, we need to prove that for any Ia-family of morphisms (h[i]wx )i∈Ia ,
there exists a morphism hwax such that h[i]wx = hwax; |ia⟩xxx for i ∈ Ia. We do this in two
steps, first proving it for (f [i]gx)i∈Ia , and then for the full expression.

We start with a family of morphisms (f [i]gx)i∈Ia ,
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By free construction, we have a morphism that gives these values when coprojected.

By the index interaction rule, the representation of the a → x morphisms as g → C(a, x)
accepts indexes in the following way.

Therefore, for any family of morphisms (f [i]gx)i∈Ia , there is a morphism g → C(a, x)
which returns those morphisms under the indexes.

Having established this, we now move to a family of morphisms (h[i]wx )i∈Ia . We expand
over the coprojections of the w axis;

Composition is closed, meaning ⟨kw|;h[i]wx is a morphism g → x. This is a family of
morphisms (⟨kw|;h[i]wx )i∈Ia , which we can expand according to the result we derived
above. We have free construction over coprojections, meaning a morphism hwx that is

equal to ⟨kw|hwx for all values of k ∈ Kw must exist.

Constructing the appropriate expression.
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3 Outer Broadcasting as the Internal Hom-Functor

Proposition 3 (Outer Broadcasting as the Internal Hom-Functor). An a-fold outer
broadcast of a morphism f : x → y is equal for all choice of families of coprojections.
For any two families of coprojections (⟨ia|)i∈Ia and

(
⟨i′a|

)
i∈Ia, we have,

This means we can diagram an a-fold outer broadcast of a morphism f : x → y without
reference to a family of coprojections. Furthermore, this expression behaves like the
hom-functored C(a, f) : C(a, x) → C(a, y), but internal to C without exiting to Set.

This means we can diagram an a-fold outer broadcast of a morphism f : x → y without
reference to a family of coprojections.

Proof. We interrogate some f⟨ia| over morphisms h : g → C(a, x). This lets us make a
statement over all possible coprojections. We use the index interaction rule and compose
the expressions.

We again use the index interaction rule.
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The expression holds for a family of indexes, which we previously proved form a family
of projections.

Finally, we see that over all h : g → C(a, x), which covers the coprojections of C(a, x), that
f⟨ia| is equal to an expression that makes no reference to the family (⟨ia|) i∈I . Therefore,
f⟨ia| is independent of the choice of the family of coprojections or corresponding indexes.

4 Corresponding Natural Transformations

Proposition 4 (Corresponding Natural Transformations). Corresponding natural trans-
formations C(ρ, x) : C(b, x) → C(a, x) are independent of the choice of family of indexes
used to define them, and are indeed natural transformations. This implies that;

We can equivalently express these using hexagons, to distinguish their naturality.

Proof. Proof. First, we prove that the expression is independent of the chosen family of
coprojections.
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As these are equal over a family of indexes, we get that;

Now, we expand ⟨ia|; ρab into a morphism and the index. This lets us get two expressions
that are equal over all indexes.

To show naturality, consider that we have ⟨ia|; ρab : g → b pass through in the manner
of broadcasting, as broadcasting is defined for any family of coprojections, and every
morphism g → b is in a family of coprojections.

The above expression holds over the entire (|ia⟩xxx) i∈I family of projections. Therefore,
we get;
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5 Inner Broadcasting

Proposition 5 (Inner Broadcasting). Inner broadcasted morphisms over a are equal for
all choices of families of coprojections.

Proof. We interrogate an expression over the coprojections of C(a, x), k and indexes of
a, and use the definition of the inner broadcast on the right-hand side. We use the

index representation rule, Then, the index interaction rule. This gives us an expression

over the indexes, a family of projections. Meaning we get; This equates the inner-

broadcasted f with the right-hand-side, an expression independent of the choice of family
of coprojections.

6 Naturality of the Distributor

Proposition 6 (Naturality of the Distributor). The distributor ∇a, ∗ : C(a, )×C(a, ∗) →
C(a, ×∗) acts like a natural transformation on independent morphisms, C(a, f)×C(a, g).
This means the distributor is a natural transformation ∇a : C(a, )×C(a, ) → C(a, × ),
which are functors of the form C × C → C.
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Proof. We expand the left-hand hand-side, using the definition of the distributor inter-
acting with a deletion.

Similarly, we show that,

As the residue of deletion gives projections, this means applying a distributor before or
after an expression is the same, proving the proposition.

7 The Distributor and Diagonalization

Proposition 7 (The Distributor and Diagonalization). The distributor ∇a, ∗ : C(a, )×
C(a, ∗) → C(a, ×∗) and the natural transformation associated to the copy map, C(∆, ) :
C(a× a, ) → C(a, ), are related in the following way;
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We can also draw this expression as;

Proof. To prove this proposition, we interrogate the expression over the residues of
deletion, which act as projections. On the right, we use the fact that C(∆, ) : C(a ×
a, ) → C(a, ) is a natural transformation to move the copy map backwards.

We then use the definition of the distributor with respect to the delete map.

We then use the copy-delete property to recover the identity.
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We similarly prove it for deletion on y.

As the two expressions are equal over both projections, the proposition holds.
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Appendix B

Appendix: Accompanying Code
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