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1. Introduction

Deep learning forms the backbone of systems increasingly intertwined with our daily lives. 

Contemporary deep learning models are immense statistical engines that researchers and 

engineers have developed by a combination of underlying theory and tinkering of practical 

implementations. Our current theoretical understanding - however - falls short of fully 

explaining practical successes, and is particularly ill-equipped to explain Residual Networks 

, a simple design feature introduced in 2015 that led to a paradigm shift in how 

(He 

et al., 2015)

we constructed and which made modern deep learning possible. Investigating the theoretical 

success of Residual Networks presents an exciting opportunity to close a gap in our 

understanding and to develop theoretical and experimental tools that can guide improved 

model design.

 

Residual Networks addressed the critical issue of making deep networks trainable. Though 

arbitrarily wide shallow networks are sufficient to represent arbitrary functions 

, since 1986  we have known that deep networks can be exponentially 

(Cybenko, 

1989) (Håstad, 1986)

more effective than wide but shallow networks in some instances. The success of early modern 

deep learning networks such as 2012's AlexNet  supported this theory, (Krizhevsky et al., 2012)

as models saw a significant decline in performance if even one layer with 1% of the model 

parameters was removed. Deep networks, however, were plagued by training difficulties and 

curiously exhibited declines in performance with depth even when their training was made 

possible by the introduction of batch normalisation . Residual Networks (Ioffe & Szegedy, 2015)

made a simple change to models - adding the input of each layer to its output - that made 

deep networks readily trainable and allowed the theorised performance increases to be observed 

in practice.

 

Residual Networks, however, took us until 2015 to discover, despite the theoretical promise of 

deep networks and the computational difficulty of implementing them being decades old, 

pointing to a shortfall in our theoretical understanding. A theory should motivate improved 

model design, justifying simple, effective design choices that improve models. However, our 

approach to analysing networks meant we only experimented with Residual Networks recently, 

despite the motivation to do so. This points to a shortfall in our understanding and raises the 

question of how many other simple, effective design choices we overlook. At the least, the 

unexpected success of Residual Networks should motivate us to learn from having overlooked 

them and develop a deep learning perspective that centres residual connections. However, even 

theoretical approaches to deep learning after 2015 ignored the importance of Residual 

Networks . This presents an exciting opportunity to contribute to (Geiger & Kubin, 2012)

theoretical deep learning by rigorously analysing Residual Networks' effectiveness.

 

Currently, many reasons for Residual Networks' effectiveness are qualitative assessments of 

improved information management. For example, the qualitative reasons proposed for the 

success of Residual Networks include preventing information from being washed out and 

allowing for feature reuse. This qualitative intuition has successfully motivated improved 

architecture design , motivating us to reinforce this intuition with testable (Huang et al., 2018)
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theories with clear implications.

 

Information theory is uniquely positioned to back this intuition with quantitative experiments 

and robust theories. Information theory provides quantitative tools to analyse the mechanics of 

information. Almost every deep learning model already uses it to derive loss functions to guide 

the training of models. It has produced valuable empirical results and insights into the 

operation of deep learning architectures , and has many theoretical (Geiger & Kubin, 2012)

tools that open a promising realm of further insights. By having the output of each layer be 

closely related to the layer inputs, Residual Networks offer potentially mathematically tractable 

methods of analysis that are worth investigating.

 

This literature review integrates into a research proposal to close the gap of our insufficient 

understanding of Residual Networks with quantitative information theory methods. First, the 

review covers the history of deep learning theory, showing the original theories that are still 

widely used ( ), covers the beginning of modern deep learning, which saw divergences Section 2.

from these theories ( ), and then goes over the development of Residual Networks Section 3.1.

that made deep learning possible ( ). Next, we show the details and success of our Section 3.2.

qualitative understanding ( ), motivating us to improve our understanding with Section 3.3.

quantitative tools. Finally, we present information theory as a promising framework to develop 

empirical tools ( ) and theoretical analyses ( ) that may close this gap. Section 4.1. Section 4.2.

We also present how focusing on the relationship between information theory and deep 

learning may make contributions to information theory, providing real examples to motivate 

grounded interpretation of deep learning theorems ( ). Throughout the review, and Section 4.3.

especially in the final sections, the promising opportunities of applying information theory tools 

to the experimental investigation and theoretical analysis of deep learning are highlighted, 

motivating the importance of our approach with clear evidence from the literature.

 

2. Classical Neural Network Theory

 

Deep learning begins with neural networks – animal neural networks, that is. In 1943 

McCulloch and Pitts presented the first logical analysis of networked Boolean statements – 

arranged to mimic what was understood of animal neural networks at the time 

. These boolean neural networks provided a basis for representing computation 

(McCulloch & 

Pitts, 1943)

abstractly, similar to Turing machines, but with a more direct link between how programs are 

theorised and implemented. These techniques enabled logic networks to be effectively analysed 

with various theorems and evolved into the deep learning networks we use today.

 

These networks implemented arbitrary boolean relationships, and in 1986 Håstad used the 

discrete models proposed by McCulloch and Pitts to show that deep networks can be 

exponentially more effective at representing certain operations 

. We can collapse layered boolean logic in a way that eliminates many of 

(J. Håstad & Goldmann, 1990; 

Johan Håstad, 1986)

the components while keeping expressive power. This work showed that deep networks could 

be far more effective than shallow but wide ones, laying the ground for deep learning. Despite 
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the motivation for deep networks, they would only become practically trainable with the 

introduction of Residual Networks in 2015 .(He et al., 2015)

 

Extending these theoretical, Boolean models to a more readily trainable continuous form lead 

to artificial neural networks operating on the sigmoid activation. Instead of zero or one inputs 

and outputs, a sigmoid neuron sums its inputs according to trainable weights. It produces an 

output between 0 and 1, saturated at the extremes to mimic a Boolean activation. 

Significantly, the universal approximation theorem introduced by Cybenko in 1989 showed that 

finite combinations of sigmoid activations could approximate continuous multivariate functions 

in a specific range with only one hidden layer . Though this theory showed (Cybenko, 1989)

that sigmoid activations are sufficiently powerful to represent arbitrary functions even with just 

one layer, it requires an immense width that we can not extend to practice. Håstad's theorem 

regarding the exponential advantages of deep networks would be required for artificial neural 

networks to be practical.

 

An information theoretic approach to deep learning took root in the late 90s. Information 

theory originates in Shannon's analysis of communication , who introduced (Shannon, 1948)

the thermodynamic term entropy to computer science and statistics after noticing an 

equivalence in many equations. An information theory-motivated signals-based analysis of deep 

learning networks was introduced with the information bottleneck method 

, which proposed that networks initially compress their inputs into an abstract codeword 

(Tishby et al., 

2000)

before interpreting these codewords into a final output. This approach used information theory 

to quantify the mechanics of information, presenting a theory that could (and was) rigorously 

tested through experiments.

 

So far, we have covered a collection of classical deep-learning theory papers. The relationship 

between these papers has the discrete neural networks of McCulloch and Pitts 

 developed by Håstad  to 

(McCulloch & 

Pitts, 1943) (J. Håstad & Goldmann, 1990; Johan Håstad, 1986)

prove the exponential advantages of deep networks. These general discrete networks were 

extended to the continuous case by Cybenko's universal approximation theorem 

 for a network with sigmoid activations. Furthermore, the information bottleneck method 

(Cybenko, 

1989)

 integrated continuous networks using sigmoid activations with the (Tishby et al., 2000)

information theory approach of Shannon . So far, ideas have been combined (Shannon, 1948)

and extended to new situations, but the models which use and criticise these theorems would 

have to wait for the improved GPUs of the 2010s.

3. Applied Deep Learning

3.1. AlexNet: The Beginning of Modern Deep Learning

 

The 2010s marked a pivotal moment in deep learning, ignited by the launch of the ImageNet 

competition. Powerful GPUs became available, allowing theories to translate into practice and 

catalysing techniques like batch normalisation and Residual Networks. This era, heralded by 

the release of AlexNet, significantly advanced our understanding of deep learning. By analysing 
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the relationship between papers and characterising their technical contributions, we develop a 

critical view of the state of our current understanding of deep learning.

 

AlexNet , introduced in 2012, revolutionised the field, reducing the (Krizhevsky et al., 2012)

top-5 error on ImageNet image recognition tasks from 26.2% to 15.3%. This leap in 

performance was made possible by taking advantage of contemporary GPUs and employing 

ReLU activations instead of sigmoids. ReLU activations prevent extreme value saturation, 

representing a shift from perceiving neural networks as discrete, probabilistic feature extractors 

to versatile data manipulators. While this divergence from classical theories was notable, ReLU 

activations upheld the concept of universal approximation, thereby building on Cybenko's work 

.(Cybenko, 1989)

 

Having 60 million parameters across 650,000 neurons, AlexNet represented a leap in network 

complexity. Its design emphasised depth, with five convolutional layers and three fully 

connected ones. This structure upheld Håstad's theories 

, as removing even a single convolutional layer, comprising just 1% of the 

(J. Håstad & Goldmann, 1990; Johan 

Håstad, 1986)

model's parameters, led to inferior performance. The authors acknowledged that with faster 

GPUs and larger datasets, performance could be further improved.

 

AlexNet marked a departure from traditional theories towards practical solutions that 

harnessed powerful ReLU activations and cutting-edge processors. Despite its success, the 

challenge of training deep networks remained. Residual Networks would later address this 

issue, setting the stage for the next wave of advancements in deep learning.

 

3.2. Deep Learning Made Possible

 

By 2014, deep learning had started veering into ever deeper networks. That year's ImageNet 

competition was won by a "very deep" 16 layer deep network using small 3x3 convolution 

filters, further showing how deep yet thin networks can have impressive performance 

. It achieved a 7.3% top-5 error, a vast improvement over the 15.3% error 

(Simonyan 

& Zisserman, 2015)

of AlexNet.

 

Around this time, the size of networks would quickly explode. First came batch normalisation 

. Batch normalisation emerged as a powerful solution to a persistent (Ioffe & Szegedy, 2015)

issue in training deep neural networks—_internal covariance shift_. The changing distribution 

of inputs and outputs during training had long impeded model performance. Batch 

normalisation addressed this by adjusting the mean and variance of hidden features, 

significantly enhancing training efficiency. Batch normalisation achieved the same accuracy as 

state-of-the-art image classification models in *14 times* fewer steps. When fully trained, 

batch normalised networks exceeded the accuracy of human raters, getting top-5 error rates as 

low as 4.8%.

 

Then came Residual Networks . Achieving first place in the 2015 image net (He et al., 2015)
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classification competition with only 3.57% top-5 test error, Residual Networks effectively 

solved the decades-long problem of training deep networks. While 2014's winning architecture 

exploited 16 layers and batch normalisation could get as deep as 30, deep Residual Networks 

could go as deep as *152 layers*. Residual Networks are so critical that the original paper - as 

of 21 May 2023 - has over 164 thousand citations.

 

Networks without residual connections, plain networks, completely alter data with every layer. 

The reasoning goes that a combination of highly general layers allows for an extremely general 

overarching algorithm, in line with Cybenko's theory that the generality of models allows for 

universal approximation . Generality at the level of every layer, however, raises (Cybenko, 1989)

issues. For example, intermediate layers can delete critical information when altering data, 

which models can never recover. This effect causes information to become "washed out" while 

being processed.

 

Instead of completely altering data at every layer, Residual Networks learn to *add* some 

value to the data. Plain networks teleport data around its possible values, while Residual 

Networks gently push it. Layers with residual connections are far more stable and less prone to 

deleting input information. Before residual connections, the performance of models would 

*decrease* with depth, while residual connections saw models improve monotonically to one 

hundred layers and beyond. By noticing this issue and resolving it, the Residual Networks 

paper showed a clear limitation of earlier work 

 and presented an elegant solution to overcome it.

(Krizhevsky et al., 2012; Simonyan & Zisserman, 

2015)

 

Figure 1: This figure from the Residual Networks paper shows how, unlike plain networks, they 

exhibited performance increases with depth.

The concept of data "washing out" in networks without residual connections, and the 

contrasting capability of Residual Networks to preserve data, was a key insight from the 

original Residual Networks paper. However, this insight was qualitative and possibly ad-hoc, 

leaving the true mechanics of information preservation and manipulation in Residual Networks 

uncertain. A lingering question is whether the success of Residual Networks relies on first 

resolving internal covariance shift and gradient issues with batch normalisation.
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Just before the advent of Residual Networks, Highway Networks  (Srivastava et al., 2015)

independently tackled the issue of training deep networks. While similar in approach to 

Residual Networks in adding the input of layers to the output, Highway Networks were slightly 

more complex, as the extent of input preservation was an additional variable that layers had to 

learn to generate.

 

However, that work gives valuable insight into the role that residual connections - or in its 

case, functionally similar highway connections - play. The Highway Networks paper does not 

mention batch normalisation (Ioffe & Szegedy, 2015)

, and was developed to tackle the same problem that batch normalisation partially addressed: 

vanishing and exploding gradients with deep networks. It overcame these issues, efficiently 

training one hundred depth networks *without* batch normalisation. Therefore, it highlights 

that Residual Networks are not dependent on batch normalisation for their effectiveness and 

could have been discovered independently. Furthermore, unlike the Residual Networks paper, it 

mentions the theories of Håstad  and (J. Håstad & Goldmann, 1990; Johan Håstad, 1986)

others, which justifies the theoretical effectiveness of deep networks.

 

The relationship of the Highway Networks paper to the rest of the literature shows how batch 

normalisation is not a prerequisite for the success of Residual Networks. It highlights how old 

theory could have provided the insight for their development. Therefore, it emphasises the 

theoretical shortfalls we are trying to address. The Residual Networks paper frames itself as 

building on the work of batch normalisation, yet it appears to be successful independent of 

their use. The mechanics of deep networks, therefore, seem only partially understood even by 

the authors of the Residual Networks paper. It is important that our theoretical framework 

makes simple and valuable improvements clear. In comparison, our old deep learning theory 

took us an excruciatingly long time to reveal the simple improvements that have become 

essential to all modern architectures.

 

3.3. Successes and Shortfalls of Our Current Intuition

 

Densely Connected Convolutional Networks  is a paper that generalises (Huang et al., 2018)

the intuition presented in the Residual Networks paper  and Highway (He et al., 2015)

Networks paper  to produce another successful architecture for image (Srivastava et al., 2015)

processing, thereby emphasising the value of grounding our theoretical understanding. Densely 

Connected Convolutional Networks take feature preservation to the extreme - preserving all 

prior extracted features for use in every subsequent layer, with the number of input channels 

to each layer growing linearly. Despite an increased number of inputs, the number of required 

parameters was lower as resources did not have to be spent by the network relearning essential 

features that had already been extracted. As a result, they achieved competitive performance 

on object recognition benchmark tasks while requiring less computation than other models, 

even in the hyper-competitive deep learning landscape that had emerged by 2018. 

 

The relationship of the Densely Connected Convolutional Networks paper to the rest of the 
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literature provides insight into how our current qualitative assessments of skip connections 

relate to improved architecture design. It makes explicit mention of the Residual Networks 

 and Highway Networks  papers, stating that it distilled 

(He 

et al., 2015) (Srivastava et al., 2015)

their insights to produce its results. Their design prioritised preventing early information from 

being washed out and maximising the flow of information and gradients throughout a network. 

Crucially, their work diverges from those papers in preserving old information by concatenation 

rather than summation. It criticises Residual Networks for having an excessive number of layers 

that contribute little and that can even be randomly dropped out, with the concatenation of 

features fed to highly specialised convolutional layers requiring far fewer overall parameters. 

Therefore, its comments on the literature highlight both the promise of the insights of residual 

connections while showing how our understanding is incomplete and alternative methods of 

preserving early information for later use may also be successful. It motivates our proposed 

avenue of research, a rigorous investigation of Residual Networks to uncover what truly 

underpins their success.

 

At this point, several reasons for the success of residual and skip connections more broadly are 

apparent from our analysis of the literature and the relationship between papers:

1. They allow for improved information flow, a qualitative assessment that offers practical 

guidance for improved model design.

2. They greatly stabilise training and regulate the behaviour of gradients, even 

independent of batch normalisation.

3. They allow for feature reuse, preventing resources such as parameters from being 

wasted on discovering already extracted features.

These are all qualitative assessments, however, motivating us to think of the valuable insights 

that may lay in a more in-depth scientific and quantitative understanding of their role.

 

So far, our literature review has focused on identifying the current literature on residual 

connections and the successes and shortfalls of our current intuition. The ImageNet papers' 

clique was assessed and related to our initial presentation of classical deep learning theories. 

The relationship between papers, their development and their criticism of each other's ideas 

has identified a rough qualitative understanding of the role of Residual Networks and the need 

to formalise these ideas with empirical and quantitative methods.

 

4. Information Theory and Deep Learning

Contemporary machine learning needs to back its qualitative intuition with quantitative tools 

and scientific experimentation. Information theory, which provides quantitative techniques to 

analyse information mechanics, is a promising approach. It has already found immense success 

in many fields; it made effective signal processing possible , is why CDs can (Shannon, 1948)

be scratched and still played back, and even explains part of why humans age 

. Compared to these successful applications, its relevance to deep learning is 

(Sinclair & 

LaPlante, 2019)

far more direct. Deep learning architectures are large statistical machines, with the information 

shared between a model's input, intermediate, output and target data being particularly 

interesting to us.
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In constructing an overall picture of the literature, we will identify various independent papers 

taking different empirical and theoretical approaches to combining deep learning with 

information theory. The relationship of these works to our investigation of Residual Networks 

and deep learning theory will often lay in the lack of relatedness. Hence, we show the 

opportunity to consolidate various ideas developed by the overall literature, motivating our 

research proposal that seeks to fill this gap.

 

4.1. Information Theory's Empirical Tools

 

A paper worth high consideration is Saxe et al.'s empirical analysis of the information 

bottleneck theory . It uses information theory to test the information (Saxe et al., 2019)

bottleneck theory with various experiments that find little evidence for its predictions 

translating to modern deep learning. The paper leaves us with many tools to conduct 

information theory-based deep learning analysis and is related to other papers that provide 

additional tools. However, despite being released at a top deep learning conference in 2018, it 

does not consider the paradigm shift that Residual Networks offer, meaning its relationship (or 

rather, lack therefore) to other parts of the literature leaves a gap that motivates our proposal 

to understand residual connections through the lens of information theory.

 

That paper starts by noting the gap identified by this literature review: "the practical 

successes of deep neural networks have not been matched by theoretical progress that 

satisfyingly explains their behavior." Already, we are in good company. It addresses the 

information bottleneck theory. The hypothesis is that during training networks first compress 

their inputs into abstract representations before extracting the critical features required by the 

task . Admirably, it is a scientific hypothesis that can be quantitatively (Tishby et al., 2000)

assessed. It has various components, which Saxe et al. found did not extend to the general 

case.

 

So far, this review has emphasised the role of Residual Networks and the particular emphasis 

they deserve in a contemporary theoretical framework for deep learning architectures. The 

empirical study by Saxe et al. into the information bottleneck theory showed that the 

prediction of a compression followed by an extraction phase resulted from saturating non-

linearities, meaning it failed to translate to the ReLU activations that researchers had started 

using instead. We have reason to believe that Residual Networks would not experience this 

compression and extraction behaviour, even if saturating non-linearities were employed. When 

adding the input back to the output, the possible values multiple layers working together can 

achieve are unrestricted, not experiencing saturation. The study did not investigate this 

avenue, thus overlooking the role of Residual Networks, further indicating that opportunities 

lay in extending information theory tools to Residual Networks.

 

Their empirical approach develops and collects numerous tools for studying the mechanics of 

information throughout a network. These have promising applications for studying residual 
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connections and link our investigation to the information theory literature. Information theory 

is the most elegant when the true distributions are known, a luxury rarely available in practice. 

Nonetheless, they successfully use various approximations to study mutual information at 

various phases in a model. These techniques come from thermodynamics 

, joining diffusion models in enhancing deep learning with physical insights. 

(Kraskov et al., 

2004)

 

They extended their study to quantitatively show how irrelevant information added to the 

input is compressed throughout training while relevant information is largely maintained. This 

is a perfect perspective from which to quantify the data degradation problem - we can run 

experiments to compare the mutual information throughout residual and plain networks and 

see what empirical evidence we find for the hypothesis that Residual Networks are more 

capable at maintaining critical information throughout training, especially as we increase depth.

 

Figure 2: This information plane diagram produced by Saxe et al. shows the relationship between the 

input data  and intermediate data  along the -axis. As data is processed, information from the input 

is reduced. This leads to the points veering left. The -axis shows the shared information between the 

target data  and the intermediate data . After training, it stays constant, as the model avoids deleting 

relevant information to their task, but some information is invariably lost.

X T x

y

Y T

 

Throughout training, different algorithms exhibit different patterns. For example, the top two diagrams 

have saturating activation functions, which first have an up-and-right compression phase that attempts 

to maintain information relevant to the input before generalising to the target. Saxe et al. showed that 

this pattern was an artifact of saturating activation functions. In the bottom two diagrams, ReLU 

activations were used, which did not exhibit this pattern. 

 

These diagrams are part of the insights a quantitative information theory-based approach to Residual 

Networks may produce, and it would be valuable to see how they differ from plain networks. For example, 

does their training start at a higher curve? Are their training curves higher up for an equal number of 

training steps?
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A gap in their empirical approach is the focus on shallow networks with less than ten layers. In 

contrast, Residual Networks shine with very deep networks. Furthermore, they exhibit limiting 

behaviour as depth increases, which would be fascinating to explore. The deeper a network 

becomes, the adjustment each layer imposes may become ever smaller as a series of fine 

adjustments become preferable to course changes. We could compare the information curves 

that ever deeper networks form. It is easy to hypothesise that deeper networks will provide 

curves located above the more shallow networks in the information plane diagrams, being able 

to maintain more information related to the final output. Observations such as these would 

provide empirical evidence for the hypothesis that depth aids Residual Networks because they 

can make ever-finer adjustments to data. Simultaneously collecting data on plain networks 

would enhance the insights provided by such experiments, providing further information about 

residual connections' role.

 

4.2. Information Theory and Analysing Deep Residual Networks

In addition to providing a wealth of empirical tools, information theory provides many 

theoretical tools to enhance our understanding of deep learning. Already, information theory is 

necessary to derive the loss functions that guide the training of models. Previously, information 

theory-based approaches have been limited by the mathematical intractability of deep learning 

architectures. As a result, restrictions are required to make the mathematics work, which 

separates the proposed models from those used in practice. However, because Residual 

Networks' input and outputs are closely related, they present a potentially mathematically 

tractable framework to investigate information flows. Our approach can address both shortfalls 

in understanding deep learning networks and gaps in how information theory concepts relate to 

real-world cases.

 

This section aims to show the promise of consolidating various approaches by showing how the 

technical characteristics of Residual Networks may overcome their limitations. However, given 

the breadth of the information theory literature and its lack of consolidation for deep learning 

purposes, the relationships between these papers are looser, with our motivation stemming 

from unifying various ideas rather than building on a developed line of research as with the 

ImageNet papers and their successful application of our existing intuition.

 

Previously, exact mathematical analyses of deep learning has required models to be heavily 

restricted in a way that no longer reflects practice. Residual Networks stabilise the 

mathematics of networks in a manner that opens up exciting avenues of exploration, 

potentially closing the gap between analytical and practical solutions. An exact analysis of the 

dynamics of deep networks was proposed by Saxe et al.  but requires (Saxe et al., 2014)

orthogonalised inputs and is restricted to linear networks, and does not make the link to 

information theory and its many tools. Similarly, other analytical approaches 

 require orthogonalising weights. A version of these analytical but restricted models - 

(Kawaguchi et al., 

2019)

volume-preserving Residual Networks  - is of interest to us. It starts by (Gomez et al., 2017)

restricting Residual Networks to preserve volume, allowing training without storing prior 

weights. This method reduces the prohibitive memory loads of large models, a result with clear 
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application to training large models. The success of their approach shows that Residual 

Networks offer a foundation for tractable analysis, and under certain conditions, we can extend 

their method to allow for the volume-changing maps we see in practice.  

 

Residual Networks may present mathematical analysis that is exact, practical, and closely 

related to information theory. Even if volume changes are left unregulated, they may remain 

manageable and allow tractable information theory quantities to be found 

. We can find the conditional entropy and mutual information from the volume changes 

(Geiger & Kubin, 

2012)

induced at each network layer. These volume changes can be derived from the gradients 

already derived during backpropagation, making these theorems easily applicable without 

storing additional values. Furthermore, suppose we are investigating the limiting case where 

the residual modifications become ever smaller. In that case, the average logarithm of the 

determinant of each layer's gradient - the logarithmic change in volume it induces - 

approaches the trace of the residual component's gradient. This elegant mathematical 

simplification warrants further exploration. The previous literature on exactly analysing the 

information flow of models may be made mathematically tractable by using Residual Networks, 

motivating our research approach.

 

A recent work by Peer et al. has examined the relationship between information theory and 

deep learning with a focus on data degradation . They derive a regulariser (Peer et al., 2022)

that motivates model stability during training derived from information theory. It allows 

exceptionally deep models to be trained - 500 layers - *without* residual connections. 

However, they analyse networks at the level of individual neurons, losing information regarding 

the correlations between neuron activations. Two tools of interest to us, mutual information 

and the elegant relationship between volume changes and the change in entropy, still need to 

be investigated. These methods allow us to examine the relatedness of information while 

considering the cross-correlation of data within layers. Furthermore, the volume change has a 

limit in the case of deep Residual Networks that is worth investigating. Nonetheless, that study 

encourages us that information theory is a worthwhile perspective from which to investigate 

data degradation.

 

4.3. Using Deep Learning to Understand Information Theory

Furthermore, an information theory-based approach to deep learning lets us address the gaps 

in our understanding of information theory. Information theory is much more well-behaved for 

discrete distributions, with the continuous distributions we observe in practice having 

promising but unfinished theoretical development. The generalisation of information theory to 

Markov categories  already makes strides in generalising entropy, the data (Perrone, 2022)

processing inequality and other concepts in information theory but leave open how metric-

dependent continuous distributions should be analysed. Deep neural networks can be viewed as 

Markov categories , meaning our approach would provide insights into (Shiebler et al., 2021)

these open questions.

 

Continuous entropy is considered to be a crude generalisation of discrete entropy, as the 
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continuous limit is technically infinite . Nonetheless, continuous entropy can be (Marsh, 2013)

meaningfully evaluated in some instances, including in well-behaved Residual Networks 

. If our approach successfully evaluates continuous entropy in a real-world case, 

(Geiger 

& Kubin, 2012)

that would aid in providing an interpretation for continuous entropy, helping close a gap in the 

information theory literature.

 

Unlike previous approaches , we could use the exact (Peer et al., 2022; Xu & Raginsky, 2017)

volume changes induced by every layer to minimise the number of rough approximations of 

entropy that we make. Entropy is closely related to other properties of distributions 

, and much previous work uses the logarithm of the standard deviation as an upper 

(Gibbs & 

Su, 2002)

bound. This has had success in deriving loss functions  and in previous (Ho et al., 2020)

theoretical analyses of deep networks . However, this (Peer et al., 2022; Xu & Raginsky, 2017)

upper bound "forgets" the difference between our distribution and an associated uncorrelated 

normal distribution, losing much potential insight in the process.

 

5. Conclusion

This literature review has analysed present work to identify notable gaps in our understanding 

of deep learning, notably the underappreciated relevance of Residual Networks to our 

theoretical understanding and the exciting opportunities that an information theory-based 

approach offers. Residual Networks present a paradigm shift to practical model design and how 

we should theoretically conceptualise deep learning architectures. The need to meet our 

practical success with theoretical understanding motivates a quantitative, empirical, and 

scientific approach that information theory has particular promise in addressing. It provides us 

with clear empirical tools to develop and evaluate different hypotheses and ties deep learning 

in the era of Residual Networks to the formal mathematics of information. Furthermore, our 

approach allows information theory to be applied to real-world cases with limited 

approximations, allowing us to simultaneously assist in closing gaps in the information theory 

literature.
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